Олимпиадные задачи по математике для 4-8 класса

Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?

Известно, что  0 < <i>a, b, c, d</i> < 1  и  <i>abcd</i> = (1 – <i>a</i>)(1 – <i>b</i>)(1 – <i>c</i>)(1 – <i>d</i>).  Докажите, что   (<i>a + b + c + d</i>) – (<i>a + c</i>)(<i>b + d</i>) ≥ 1.

В каждой клетке секретной таблицы <i>n</i>×<i>n</i> записана одна из цифр от 1 до 9. Из них получаются <i>n</i>-значные числа, записанные в строках слева направо и в столбцах сверху вниз. Петя хочет написать такое <i>n</i>-значное число без нулей в записи, чтобы ни это число, ни оно же, записанное задом наперед, не совпадало ни с одним из 2<i>n</i> чисел в строках и столбцах таблицы. В каком наименьшем количестве клеток Петя должен для этого узнать цифры?

Имеется многоугольник. Для каждой стороны поделим её длину на сумму длин всех остальных сторон. Затем сложим все получившиеся дроби. Докажите, что полученная сумма меньше 2.

Еще Архимед знал, что шар занимает ровно<i> <img align="absmiddle" src="/storage/problem-media/115708/problem_115708_img_2.gif"> </i>объема цилиндра, в который он вписан (шар касается стенок, дна и крышки цилиндра). В цилиндрической упаковке находятся 5 стоящих друг на друге шаров. Найдите отношение пустого места к занятому в этой упаковке.

<center><i> <img align="absmiddle" src="/storage/problem-media/115708/problem_115708_img_3.gif"> </i></center>

Даны две картофелины произвольной формы и размера. Докажите, что по поверхности каждой из них можно проложить по проволочке так, что получатся два изогнутых колечка (не обязательно плоских), одинаковых по форме и размеру.

Даны три различных натуральных числа, одно из которых равно полусумме двух других.

Может ли произведение этих трёх чисел являться точной 2008-й степенью натурального числа?

В окружность радиуса 2 вписан остроугольный треугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub>. Докажите, что на дугах <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>3</sub><i>A</i><sub>1</sub> можно отметить по одной точке (<i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>, <i>B</i><sub>3</sub> соответственно) так, чтобы площадь шестиугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>A&l...

На бумажке записаны 1 и некоторое нецелое число <i>x</i>. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке

число <i>x</i>²?

Верно ли, что к любому числу, равному произведению двух последовательных натуральных чисел, можно приписать в конце какие-то две цифры так, что получится квадрат натурального числа?

Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

Вокруг правильного семиугольника описали окружность и вписали в него окружность. То же проделали с правильным 17-угольником. В результате каждый из многоугольников оказался расположенным в своем круговом кольце. Оказалось, что площади этих колец одинаковы. Докажите, что стороны многоугольников одинаковы.

В неравнобедренном треугольнике<i> ABC </i>проведены медианы<i> AK </i>и<i> BL </i>. Углы<i> BAK </i>и<i> CBL </i>равны30<i><sup>o</sup> </i>. Найдите углы треугольника<i> ABC </i>.

Точка <i>P</i> лежит внутри равнобедренного треугольника <i>ABC</i>  (<i>AB = BC </i>),  причём  ∠<i>ABC</i> = 80°,  ∠<i>PAC</i> = 40°,  ∠<i>ACP</i> = 30°.  Найдите угол <i>BPC</i>.

Наибольший угол остроугольного треугольника в пять раз больше наименьшего.

Найдите углы этого треугольника, если известно, что все они выражаются целым числом градусов.

Каждой паре чисел <i>x</i> и <i>y</i> поставлено в соответствие некоторое число <i>x</i><i>y</i>. Найдите 19931935, если известно, что для любых трёх чисел <i>x, y, z</i>  выполнены тождества:  <i>x</i><i>x</i> = 0  и  <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i><i>y</i>) + <i>z</i>.

Положительные числа <i>a</i>, <i>b</i> и <i>c</i> таковы, что  <i>abc</i> = 1.  Докажите неравенство <div align="CENTER"> <img width="70" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_2.gif"> + <img width="68" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_3.gif"> + <img width="70" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_4.gif"> ≤ 1. </div>

Можно ли раскрасить все точки квадрата и круга в чёрный и белый цвета так, чтобы множества белых точек этих фигур были подобны друг другу и множества чёрных точек также были подобны друг другу (возможно, с различными коэффициентами подобия)?

Остроугольный треугольник разрезали прямолинейным разрезом на две (не обязательно треугольные) части, затем одну из этих частей – опять на две части, и так далее: на каждом шаге выбирали любую из уже имеющихся частей и разрезали её (по прямой) на две. Через несколько шагов оказалось, что исходный треугольник распался на несколько треугольников. Могут ли все они быть тупоугольными?

Натуральное число <i>N</i> в 999...99 (<i>k</i> девяток) раз больше суммы своиx цифр. Укажите все возможные значения <i>k</i> и для каждого из них приведите пример такого числа.

2002 год — год-палиндром, то есть одинаково читается справа налево и слева направо. Предыдущий год-палиндром был 11 лет назад (1991). Какое максимальное число годов-непалиндромов может идти подряд (между 1000 и 9999 годами)?

В вершинах куба<i>ABCDEFGH</i>расставлены натуральные числа так, что числа в соседних (по ребру) вершинах отличаются не более чем на единицу. Докажите, что обязательно найдутся две диаметрально противоположные вершины, числа в которых отличаются не более чем на единицу. (Пары диаметрально противоположных вершин куба: <i>A</i> и <i>G</i>, <i>B</i> и <i>H</i>, <i>C</i> и <i>E</i>, <i>D</i> и <i>F</i>.)

<img src="/storage/problem-media/103857/problem_103857_img_2.gif">

Дан треугольник <i>ABC</i>. В нём <i>R</i> – радиус описанной окружности, <i>r</i> – радиус вписанной окружности, <i>a</i> – длина наибольшей стороны, <i>h</i> – длина наименьшей высоты. Докажите, что  <sup><i>R</i></sup>/<i><sub>r</sub> > <sup>a</sup></i>/<sub><i>h</i>. </sub>

a) Двое показывают карточный фокус. Первый снимает пять карт из колоды, содержащей 52 карты (предварительно перетасованной кем-то из зрителей), смотрит в них и после этого выкладывает их в ряд слева направо, причём одну из карт кладёт рубашкой вверх, а остальные – картинкой вверх. Второй участник фокуса отгадывает закрытую карту. Докажите, что они могут так договориться, что второй всегда будет угадывать карту. б) Второй фокус отличается от первого тем, что первый участник выкладывает слева направо четыре карты картинкой вверх, а одну не выкладывает. Могут ли и в этом случае участники фокуса так договориться, чтобы второй всегда угадывал невыложенную карту?

Шесть игральных костей нанизали на спицу так, что каждая может вращаться независимо от остальных (протыкаем через центры противоположных граней). Спицу положили на стол и прочитали число, образованное цифрами на верхних гранях костей. Докажите, что можно так повернуть кости, чтобы это число делилось на 7. (На гранях стоят цифры от 1 до 6, сумма цифр на противоположных гранях равна 7.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка