Олимпиадные задачи по математике для 8 класса - сложность 2-3 с решениями

Натуральные числа <i>a, b</i> и <i>c</i>, где <i>c</i> ≥ 2, таковы, что  <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> = <sup>1</sup>/<sub><i>c</i></sub>.  Докажите, что хотя бы одно из чисел  <i>a + c,  b + c</i> – составное.

Для натуральных чисел  <i>a</i> > <i>b</i> > 1  определим последовательность  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ...  формулой   <img align="absmiddle" src="/storage/problem-media/116644/problem_116644_img_2.gif"> .   Найдите наименьшее <i>d</i>, при котором ни при каких <i>a</i> и <i>b</i> эта последовательность не содержит <i>d</i> последовательных членов, являющихся простыми числами.

Найдите все такие тройки простых чисел <i>p, q, r</i>, что четвёртая степень каждого из них, уменьшенная на 1, делится на произведение двух остальных.

Существуют ли три попарно различных ненулевых целых числа, сумма которых равна нулю, а сумма тринадцатых степеней которых является квадратом некоторого натурального числа?

Для натурального  <i>n</i> > 3  будем обозначать через <i>n</i>? (<i>n-вопросиал</i>) произведение всех простых чисел, меньших <i>n</i>. Решите уравнение  <i>n</i>? = 2<i>n</i> + 16.

Числа <i>a, b, c</i> таковы, что  <i>a</i>²(<i>b + c</i>) = <i>b</i>²(<i>a + c</i>) = 2008  и  <i>a ≠ b</i>.  Найдите значение выражения  <i>c</i>²(<i>a + b</i>).

Существуют ли такие простые числа <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, ..., <i>p</i><sub>2007</sub>, что  <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_2.gif">  делится на <i>p</i><sub>2</sub>,  <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_3.gif">  делится на <i>p</i><sub>3</sub>, ...,  <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_4.gif">  делится на <i>p</i><sub>1</sub>?

Бесконечная возрастающая арифметическая прогрессия, состоящая из натуральных чисел, содержит точный куб натурального числа.

Докажите, что она содержит и точный куб, не являющийся точным квадратом.

При каких натуральных <i>n</i> найдутся такие целые <i>a, b, c</i>, что их сумма равна нулю, а число  <i>a<sup>n</sup> + b<sup>n</sup> + c<sup>n</sup></i>  – простое?

При каких натуральных <i>n</i> найдутся такие положительные рациональные, но не целые числа <i>a</i> и <i>b</i>, что оба числа  <i>a + b</i>  и  <i>a<sup>n</sup> + b<sup>n</sup></i>  – целые?

Произведение квадратных трёхчленов  <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>,  <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>,  ...,  <i>x</i>² + <i>a<sub>n</sub>x + b<sub>n</sub></i>  равно многочлену  <i>P</i>(<i>x</i>) = <i>x</i><sup>2<i>n</i></sup> + <i>c</i><sub>1</sub><i>x</i><sup>2<i>n</i>–1</sup> + <i>c</i><sub>2</sub><i>x</i><sup>2<i>n</i>–2</sup> + ... + <i>c</i><sub>2<i>n</i>–1</...

Найдите все такие пары  (<i>a, b</i>)  натуральных чисел, что при любом натуральном <i>n</i> число  <i>a<sup>n</sup> + b<sup>n</sup></i>  является точной (<i>n</i>+1)-й степенью.

Может ли в наборе из шести чисел  (<i>a, b, c</i>, <sup><i>a</i>²</sup>/<sub><i>b</i></sub>, <sup><i>b</i>²</sup>/<sub><i>c</i></sub>, <sup><i>c</i>²</sup>/<sub><i>a</i></sub>},  где <i>a, b, c</i> – положительные числа, оказаться ровно три различных числа?

Для некоторых натуральных чисел <i>a, b, c</i> и <i>d</i> выполняются равенства  <i><sup>a</sup>/<sub>c</sub> = <sup>b</sup>/<sub>d</sub></i> = <sup><i>ab</i>+1</sup>/<sub><i>cd</i>+1</sub>.  Докажите, что  <i>a = c</i>  и  <i>b = d</i>.

В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?

Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

Найдите все простые <i>p</i>, для каждого из которых существуют такие натуральные <i>x</i> и <i>y</i>, что  <i>p<sup>x</sup> = y</i>³ + 1.

Существуют ли различные взаимно простые в совокупности натуральные числа <i>a, b</i> и <i>c</i>, большие 1 и такие, что  2<i><sup>a</sup></i> + 1  делится на <i>b</i>,  2<i><sup>b</sup></i> + 1  делится на <i>c</i>, а  2<i><sup>c</sup></i> + 1  делится на <i>a</i>?

Рассматриваются 2000 чисел: 11, 101, 1001, ... . Докажите, что среди этих чисел не менее 99% составных.

Существуют ли действительные числа<i> a </i>,<i> b </i>и<i> c </i>такие, что при всех действительных<i> x </i>и<i> y </i>выполняется неравенство <center><i>

|x+a|+|x+y+b|+|y+c|>|x|+|x+y|+|y|? </i></center>

Сумма кубов трёх последовательных натуральных чисел оказалась кубом натурального числа. Докажите, что среднее из этих трёх чисел делится на 4.

Найдите наименьшее натуральное число, не представимое в виде   <img align="absmiddle" src="/storage/problem-media/109823/problem_109823_img_2.gif"> ,   где <i>a, b, c, d</i> – натуральные числа.

Пусть натуральные числа <i>x, y, p, n</i> и <i>k</i> таковы, что  <i> x<sup>n</sup> + y<sup>n</sup> = p<sup>k</sup></i>.

Докажите, что если число <i>n</i>  (<i>n</i> > 1)  нечётно, а число <i>p</i> нечётное простое, то <i>n</i> является степенью числа <i>p</i> (с натуральным показателем).

Плоская выпуклая фигура ограничена отрезками<i> AB </i>и<i> AD </i>и дугой<i> BD </i>некоторой окружности (рис.1). Постройте какую-нибудь прямую, которая делит пополам: а) периметр этой фигуры; б) её площадь.

Отрезки <i>AB</i> и <i>CD</i> лежат на двух сторонах угла <i>BOD</i> (<i>A</i> лежит между <i>O</i> и <i>B, C</i> – между <i>O</i> и <i>D</i>). Через середины отрезков <i>AD</i> и <i>BC</i> проведена прямая, пересекающая стороны угла в точках <i>M</i> и <i>N</i> (<i>M, A</i> и <i>B</i> лежат на одной стороне угла; <i>N, C</i> и <i>D</i> – на другой). Докажите, что

<i>OM</i> : <i>ON = AB</i> : <i>CD</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка