Олимпиадные задачи по математике для 11 класса - сложность 1-3 с решениями
Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?
Даны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).
Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?
Найдите все такие натуральные <i>n</i>, что при некоторых отличных от нуля действительных числах <i>a, b, c, d</i> многочлен (<i>ax + b</i>)<sup>1000</sup> – (<i>cx + d</i>)<sup>1000</sup> после раскрытия скобок и приведения всех подобных слагаемых имеет ровно <i>n</i> ненулевых коэффициентов.
Назовём тройку натуральных чисел (<i>a, b, c</i>) <i>квадратной</i>, если они образуют арифметическую прогрессию (именно в таком порядке), число <i>b</i> взаимно просто с каждым из чисел <i>a</i> и <i>c</i>, а число <i>abc</i> является точным квадратом. Докажите, что для любой квадратной тройки найдётся другая квадратная тройка, имеющая с ней хотя бы одно общее число. (Тройка (<i>c, b, a</i>) новой тройкой не считается.)
При каких натуральных <i>n</i> > 1 существуют такие натуральные <i>b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i> (не все из которых равны), что при всех натуральных <i>k</i> число
(<i>b</i><sub>1</sub> + <i>k</i>)(<i>b</i><sub>2</sub> + <i>k</i>)...(<i>b<sub>n</sub> + k</i>) является степенью натурального числа? (Показатель степени может зависеть от <i>k</i>, но должен быть больше 1.)
Для вещественных <i>x > y</i> > 0 и натуральных <i>n > k</i> докажите неравенство (<i>x<sup>k</sup> – y<sup>k</sup></i>)<sup><i>n</i></sup> < (<i>x<sup>n</sup> – y<sup>n</sup></i>)<sup><i>k</i></sup>.
При каких натуральных <i>n</i> найдутся такие целые <i>a, b, c</i>, что их сумма равна нулю, а число <i>a<sup>n</sup> + b<sup>n</sup> + c<sup>n</sup></i> – простое?
Произведение квадратных трёхчленов <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>, <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>, ..., <i>x</i>² + <i>a<sub>n</sub>x + b<sub>n</sub></i> равно многочлену <i>P</i>(<i>x</i>) = <i>x</i><sup>2<i>n</i></sup> + <i>c</i><sub>1</sub><i>x</i><sup>2<i>n</i>–1</sup> + <i>c</i><sub>2</sub><i>x</i><sup>2<i>n</i>–2</sup> + ... + <i>c</i><sub>2<i>n</i>–1</...
Сумма положительных чисел <i>a, b, c</i> равна <sup>π</sup>/<sub>2</sub>. Докажите, что cos <i>a</i> + cos <i>b</i> + cos <i>c</i> > sin <i>a</i> + sin <i>b</i> + sin <i>c</i>.
Пусть<i> α </i>,<i> β </i>,<i> γ </i>,<i> τ </i>– такие положительные числа, что при всех<i> x </i> <center><i>
sinα x+ sinβ x= sinγ x+ sinτ x.
</i></center> Докажите, что<i> α=γ </i>или<i> α=τ </i>.
Докажите, что для любого многочлена <i>P</i>(<i>x</i>) степени <i>n</i> с натуральными коэффициентами найдется такое целое число <i>k</i>, что числа <i>P</i>(<i>k</i>), <i>P</i>(<i>k</i> + 1), ...,
<i>P</i>(<i>k</i> + 1996) будут составными, если
а) <i>n</i> = 1;
б) <i>n</i> – произвольное натуральное число.
Приведите пример многочлена <i>P</i>(<i>x</i>) степени 2001, для которого <i>P</i>(<i>x</i>) + <i>P</i>(1 – <i>x</i>) ≡ 1.
<i>a, b, c</i> – стороны треугольника. Докажите неравенство <img align="middle" src="/storage/problem-media/105065/problem_105065_img_2.gif">
Существуют ли такие иррациональные числа <i>a</i> и <i>b</i>, что <i>a </i> > 1, <i>b</i> > 1, и [<i>a<sup>m</sup></i>] отлично от [<i>b<sup>n</sup></i>] при любых натуральных числах <i>m</i> и <i>n</i>?
Натуральные числа <i>a, b, c, d</i> таковы, что наименьшее общее кратное этих чисел равно <i>a + b + c + d</i>.
Докажите, что <i>abcd</i> делится на 3 или на 5 (или на то и другое).
Докажите, что существует бесконечно много нечётных <i>n</i>, для которых число 2<i><sup>n</sup> + n</i> – составное.
Существует ли треугольник, для сторон <i>x, y, z</i> которого выполнено соотношение <i>x</i>³ + <i>y</i>³ + <i>z</i>³ = (<i>x + y</i>)(<i>y + z</i>)(<i>z + x</i>)?
Дан треугольник <i>ABC</i>, все углы которого меньше φ, где φ < <sup>2π</sup>/<sub>3</sub>.
Докажите, что в пространстве существует точка, из которой все стороны треугольника <i>ABC</i> видны под углом φ.
Назовём натуральное число <i>почти квадратом</i>, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что каждый почти квадрат можно представить в виде частного двух почти квадратов.
Натуральные числа <i>a, x</i> и <i>y</i>, большие 100, таковы, что <i>y</i>² – 1 = <i>a</i>²(<i>x</i>² – 1). Какое наименьшее значение может принимать дробь <sup><i>a</i></sup>/<sub><i>x</i></sub>?
Целые числа <i>a, x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub>13</sub> таковы, что <i>a</i> = (1 + <i>x</i><sub>1</sub>)(1 + <i>x</i><sub>2</sub>)...(1 + <i>x</i><sub>13</sub>) = (1 – <i>x</i><sub>1</sub>)(1 – <i>x</i><sub>2</sub>)...(1 – <i>x</i><sub>13</sub>). Докажите, что <i>ax</i><sub>1</sub><i>x</i><sub>2</sub>...<i>x</i><sub>13</sub> = 0.
Стозначное натуральное число <i>n</i> назовём <i>необычным</i>, если десятичная запись числа <i>n</i>³ заканчивается на <i>n</i>, а десятичная запись числа <i>n</i>² не заканчивается на <i>n</i>. Докажите, что существует не менее двух стозначных необычных чисел.
Найдите все такие натуральные <i>k</i>, что произведение первых <i>k</i> нечётных простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей, чем первая).
Существует ли такое натуральное <i>n</i>, что для любых ненулевых цифр <i>a</i> и <i>b</i> число <span style="text-decoration: overline;"><i>anb</i></span> делится на <span style="text-decoration: overline;"><i>ab</i></span> ? (Через <span style="text-decoration: overline;"><i>x...y</i></span> обозначено число, получаемое приписыванием друг к другу десятичных записей чисел <i>x, ..., y</i>.)