Олимпиадные задачи из источника «2006-2007» - сложность 3-4 с решениями
2006-2007
НазадОкружность проходит через вершины <i>B</i> и <i>C</i> треугольника <i>ABC</i> и пересекает стороны <i>AB</i> и <i>AC</i> в точках <i>D</i> и <i>E</i> соответственно. Отрезки <i>CD</i> и <i>BE</i> пересекаются в точке <i>O</i>. Пусть <i>M</i> и <i>N</i> – центры окружностей, вписанных соответственно в треугольники <i>ADE</i> и <i>ODE</i>. Докажите, что середина меньшей дуги <i>DE</i> лежат на прямой <i>MN</i>.
В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?
Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?
В клетках таблицы 10×10 произвольно расставлены натуральные числа от 1 до 100, каждое по одному разу. За один ход разрешается поменять местами любые два числа. Докажите, что за 35 ходов можно добиться того, чтобы сумма каждых двух чисел, стоящих в клетках с общей стороной, была составной.
Дима посчитал факториалы всех натуральных чисел от80 до 99, нашел числа, обратные к ним, и напечатал получившиеся десятичные дроби на 20 бесконечных ленточках (например, на последней ленточке было напечатано число<i> <img align="abscenter" src="/storage/problem-media/111849/2.gif">=</i>0<i>, <img align="absmiddle" src="/storage/problem-media/111849/3.gif"></i>10715<i>.. </i>). Саша хочет вырезать из одной ленточки кусок, на котором записано<i> N </i>цифр подряд и нет запятой. При каком наибольшем<i> N </i>он сможет это сделать так, чтобы Дима не смог определить по этому куску, какую ленточку испортил Саша?
Дан остроугольный треугольник <i>ABC</i>. Точки <i>M</i> и <i>N</i> – середины сторон <i>AB</i> и <i>BC</i> соответственно, точка <i>H</i> – основание высоты, опущенной из вершины <i>B</i>. Описанные окружности треугольников <i>AHN</i> и <i>CHM</i> пересекаются в точке <i>P</i> (<i>P ≠ H</i>). Докажите, что прямая <i>PH</i> проходит через середину отрезка <i>MN</i>.
В каждой вершине выпуклого 100-угольника написано по два различных числа. Докажите, что можно вычеркнуть по одному числу в каждой вершине так, чтобы оставшиеся числа в каждых двух соседних вершинах были различными.
В треугольнике <i>ABC</i> проведена биссектриса <i>BB</i><sub>1</sub>. Перпендикуляр, опущенный из точки <i>B</i><sub>1</sub> на <i>BC</i>, пересекает дугу <i>BC</i> описанной окружности треугольника <i>ABC</i> в точке <i>K</i>. Перпендикуляр опущенный из точки <i>B</i> на <i>AK</i> пересекает <i>AC</i> в точке <i>L</i>. Докажите что точки <i>K, L</i> и середина дуги <i>AC</i> (не содержащей точку <i>B</i>) лежат на одной прямой.
Два игрока по очереди проводят диагонали в правильном (2<i>n+</i>1)-угольнике (<i>n</i> > 1). Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выиграет при правильной игре?
На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.
Приведённые квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) таковы, что уравнения <i>f</i>(<i>g</i>(<i>x</i>)) = 0 и <i>g</i>(<i>f</i>(<i>x</i>)) = 0 не имеют вещественных корней.
Докажите, что хотя бы одно из уравнений <i>f</i>(<i>f</i>(<i>x</i>)) = 0 и <i>g</i>(<i>g</i>(<i>x</i>)) = 0 тоже не имеет вещественных корней.
У выпуклого многогранника одна вершина <i>A</i> имеет степень 5, а все остальные – степень 3. Назовём раскраску рёбер многогранника в синий, красный и лиловый цвета <i>хорошей</i>, если для каждой вершины степени 3 все выходящие из нее ребра покрашены в разные цвета. Оказалось, что количество хороших раскрасок не делится на 5. Докажите, что в одной из хороших раскрасок какие-то три последовательных ребра, выходящие из <i> A </i>, покрашены в один цвет.
Две окружности<i> σ<sub>1</sub> </i>и<i> σ<sub>2</sub> </i>пересекаются в точках<i> A </i>и<i> B </i>. Пусть<i> PQ </i>и<i> RS </i>– отрезки общих внешних касательных к этим окружностям (точки<i> P </i>и<i> R </i>лежат на<i> σ<sub>1</sub> </i>, точки<i> Q </i>и<i> S </i>– на<i> σ<sub>2</sub> </i>). Оказалось, что<i> RB|| PQ </i>. Луч<i> RB </i>вторично пересекает<i> σ<sub>2</sub> </i>в точке<i> W </i>. Найдите отношение<i> RB/BW </i>.
Дан набор из<i> n></i>2векторов. Назовем вектор набора длинным, если его длина не меньше длины суммы остальных векторов набора. Докажите, что если каждый вектор набора– длинный, то сумма всех векторов набора равна нулю.
Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из <i>N</i> цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем <i>N</i> фокусник может договориться с помощником так, чтобы фокус гарантированно удался?
Дан многочлен <i>P</i>(<i>x</i>) = <i>a</i><sub>0</sub><i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i>. Положим <i>m</i> = min {<i>a</i><sub>0</sub>, <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub>, ..., <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i>}.
Докажите, что <i>P</i>(<i>x</i>) ≥ <i>mx<sup>n</sup></i>...
Грани куба 9×9×9 разбиты на единичные клетки. Куб оклеен без наложений бумажными полосками 2×1 (стороны полосок идут по сторонам клеток). Докажите, что число согнутых полосок нечётно.
В стране есть <i>N</i> городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого <i>k</i> (2 ≤ <i>k ≤ N</i>) при любом выборе <i>k</i> городов количество авиалиний между этими городами не будет превосходить 2<i>k</i> – 2. Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.
Существуют ли такие ненулевые числа <i>a, b, c</i>, что при любом <i>n</i> > 3 можно найти многочлен вида <i>P<sub>n</sub></i>(<i>x</i>) = <i>x<sup>n</sup> + ... + ax</i>² + <i>bx + c</i>, имеющий ровно <i>n</i> (не обязательно различных) целых корней?
В бесконечной последовательности (<i>x<sub>n</sub></i>) первый член <i>x</i><sub>1</sub> – рациональное число, большее 1, и <i>x</i><sub><i>n</i>+1</sub> = <i>x<sub>n</sub></i> + <sup>1</sup>/<sub>[<i>x<sub>n</sub></i>]</sub> при всех натуральных <i>n</i>.
Докажите, что в этой последовательности есть целое число.
Вписанная окружность треугольника <i>ABC</i> касается сторон <i>BC, AC, AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Отрезок <i>AA</i><sub>1</sub> вторично пересекает вписанную окружность в точке <i>Q</i>. Прямая <i>l</i> параллельна <i>BC</i> и проходит через <i>A</i>. Прямые <i>A</i><sub>1</sub><i>C</i><sub>1</sub> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub> пересекают <i>l</i> в точках <i>P</i> и <i>R</i> соответственно. Докажите, что ∠<i...
Докажите, что при<i> k></i>10в произведении <center><i>
f</i>(<i>x</i>)<i> = cos x cos </i>2<i>x cos </i>3<i>x .. cos </i>2<i><sup>k</sup> x
</i></center> можно заменить один<i> cos </i>на<i> sin </i>так, что получится функция<i> f<sub>1</sub></i>(<i>x</i>), удовлетворяющая при всех действительных<i> x </i>неравенству<i> |f<sub>1</sub></i>(<i>x</i>)<i>|<img src="/storage/problem-media/111826/problem_111826_img_2.gif"> <img src="/storage/problem-media/111826/problem_111826_img_3.gif"> </i>.
В классе учится 15 мальчиков и 15 девочек. В день 8 Марта некоторые мальчики позвонили некоторым девочкам и поздравили их с праздником (никакой мальчик не звонил одной и той же девочке дважды). Оказалось, что детей можно единственным образом разбить на 15 пар так, чтобы в каждой паре оказались мальчик с девочкой, которой он звонил. Какое наибольшее число звонков могло быть сделано?
В натуральном числе <i>A</i> переставили цифры, получив число <i>B</i>. Известно, что <img align="top" src="/storage/problem-media/111791/problem_111791_img_2.gif"> Найдите наименьшее возможное значение <i>n</i>.
Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?