Олимпиадные задачи из источника «Заключительный этап»

На сторонах <i>AP</i> и <i>PD</i> остроугольного треугольника <i>APD</i> выбраны соответственно точки <i>B</i> и <i>C</i>. Диагонали четырёхугольника <i>ABCD</i> пересекаются в точке <i>Q</i>. Точки <i>H</i><sub>1</sub> и <i>H</i><sub>2</sub> являются ортоцентрами треугольников <i>APD</i> и <i>BPC</i> соответственно. Докажите, что если прямая <i>H</i><sub>1</sub><i>H</i><sub>2</sub> проходит через точку <i>X</i> пересечения описанных окружностей треугольников <i>ABQ</i> и <i>CDQ</i>, то она проходит и через точку <i>Y</i> пересечения описанны...

Можно ли в клетках бесконечного клетчатого листа расставить натуральные числа таким образом, чтобы при любых натуральных  <i>m, n</i> > 100  сумма чисел в любом прямоугольнике <i>m</i>×<i>n</i> клеток делилась на  <i>m + n</i>?

Пусть <i>a, b, c</i> – положительные числа, сумма которых равна 1. Докажите неравенство:   <img align="middle" src="/storage/problem-media/109792/problem_109792_img_2.gif">

В стране <i>n</i> городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза.

Последовательность {<i>a<sub>n</sub></i>} строится следующим образом:  <i>a</i><sub>1</sub> = <i>p</i>  – простое число, имеющее ровно 300 ненулевых цифр, <i>a</i><sub><i>n</i>+1</sub> – период десятичной дроби <sup>1</sup>/<sub><i>a<sub>n</sub></i></sub>, умноженный на 2. Найдите число <i>a</i><sub>2003</sub>.

На прямой расположены2<i>k-</i>1белый и2<i>k-</i>1черный отрезок. Известно, что любой белый отрезок пересекается хотя бы с<i> k </i>черными, а любой черный – хотя бы с<i> k </i>белыми. Докажите, что найдутся черный отрезок, пересекающийся со всеми белыми, и белый отрезок, пересекающийся со всеми черными.

Числовое множество <i>M</i>, содержащее 2003 различных числа, таково, что для каждых двух различных элементов <i>a, b</i> из <i>M</i> число

<img align="absmiddle" src="/storage/problem-media/109787/problem_109787_img_2.gif">   рационально. Докажите, что для любого <i>a</i> из <i>M</i> число  <img align="absmiddle" src="/storage/problem-media/109787/problem_109787_img_3.gif">  рационально.

Найдите наибольшее натуральное число <i>N</i>, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы 20×20 найдутся два числа, стоящих в одной строке или одном столбце, разность которых будет не меньше <i>N</i>.

Последовательность натуральных чисел <i>a<sub>n</sub></i> строится следующим образом: <i>a</i><sub>0</sub> – некоторое натуральное число;  <i>a</i><sub><i>n</i>+1</sub> = &frac15; <i>a<sub>n</sub></i>,  если <i>a<sub>n</sub></i> делится на 5;

<i>a</i><sub><i>n</i>+1</sub> = [<img align="absmiddle" src="/storage/problem-media/109784/problem_109784_img_2.gif"> <i>a<sub>n</sub></i>],  если <i>a<sub>n</sub></i> не делится на 5. Докажите, что начиная с некоторого члена последовательность <i>a<sub>n</sub></i> возрастает.

На плоскости дано конечное множество точек<i> X </i>и правильный треугольник<i> T </i>. Известно, что любое подмножество<i> X' </i>множества<i> X </i>, состоящее из не более9точек, можно покрыть двумя параллельными переносами треугольника<i> T </i>. Докажите, что все множество<i> X </i>можно покрыть двумя параллельными переносами<i> T </i>.

Дано дерево с <i>n</i> вершинами,  <i>n</i> ≥ 2.  В его вершинах расставлены числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x<sub>n</sub></i>, а на каждом ребре записано произведение чисел, стоящих в концах этого ребра. Обозначим через <i>S</i> сумму чисел на всех рёбрах. Докажите, что   <img align="absmiddle" src="/storage/problem-media/109782/problem_109782_img_2.gif">

Числовое множество<i> M </i>, содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов<i> a,b,c </i>из<i> M </i>число<i> a</i>2<i>+bc </i>рационально. Докажите, что можно выбрать такое натуральное<i> n </i>, что для любого<i> a </i>из<i> M </i>число<i> a<img src="/storage/problem-media/109780/problem_109780_img_2.gif"> </i>рационально.

Вписанная в тетраэдр<i> ABCD </i>сфера касается его граней<i> ABC </i>,<i> ABD </i>,<i> ACD </i>и<i> BCD </i>в точках<i> D<sub>1</sub> </i>,<i> C<sub>1</sub> </i>,<i> B<sub>1</sub> </i>и<i> A<sub>1</sub> </i>соответственно. Рассмотрим плоскость, равноудаленную от точки<i> A </i>и плоскости<i> B<sub>1</sub>C<sub>1</sub>D<sub>1</sub> </i>и три другие аналогично построенные плоскости. Докажите, что тетраэдр, образованный этими четырьмя плоскостями, имеет тот же центр описанной сферы, что и тетраэдр<i> ABCD </i>.

В стране 100 городов, некоторые пары городов соединены дорогами. Для каждых четырёх городов существуют хотя бы две дороги между ними. Известно, что не существует маршрута, проходящего по каждому городу ровно один раз. Докажите, что можно выбрать два города таким образом, чтобы каждый из оставшихся городов был соединен дорогой хотя бы с одним из двух выбранных городов.

Длины сторон треугольника являются корнями кубического уравнения с рациональными коэффициентами.

Докажите, что длины высот треугольника являются корнями уравнения шестой степени с рациональными коэффициентами.

У Ани и Бори было по длинной полосе бумаги. На одной из них была написана буква А, на другой – Б. Каждую минуту один из них (не обязательно по очереди) приписывает справа или слева к слову на своей полосе слово с полосы другого. Докажите, что через сутки слово с Аниной полосы можно будет разрезать на 2 части и переставить их местами так, что получится то же слово, записанное в обратном порядке.

Даны многочлены  <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) с целыми неотрицательными коэффициентами, <i>m</i> – наибольший коэффициент многочлена  <i>f</i>. Известно, что для некоторых натуральных чисел  <i>a < b</i>  имеют место равенства  <i>f</i>(<i>a</i>) = <i>g</i>(<i>a</i>)  и  <i>f</i>(<i>b</i>) = <i>g</i>(<i>b</i>).  Докажите, что если  <i>b > m</i>,  то многочлены  <i>f</i> и <i>g</i> совпадают.

Пусть<i> α </i>,<i> β </i>,<i> γ </i>,<i> τ </i>– такие положительные числа, что при всех<i> x </i> <center><i>

sinα x+ sinβ x= sinγ x+ sinτ x.

</i></center> Докажите, что<i> α=γ </i>или<i> α=τ </i>.

В треугольнике <i>ABC</i> через <i>O, I</i> обозначены центры описанной и вписанной окружностей соответственно. Вневписанная окружность ω<i><sub>a</sub></i> касается продолжений сторон <i>AB</i> и <i>AC</i> в точках <i>K</i> и <i>M</i> соответственно, а стороны <i>BC</i> – в точке <i>N</i>. Известно, что середина <i>P</i> отрезка <i>KM</i> лежит на описанной окружности треугольника <i>ABC</i>. Докажите, что точки <i>O, N</i> и <i>I</i> лежат на одной прямой.

Диагонали вписанного четырёхугольника <i>ABCD</i> пересекаются в точке <i>O</i>. Пусть описанные окружности <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> треугольников <i>ABO</i> и <i>CDO</i> второй раз пересекаются в точке <i>K</i>. Прямые, проходящие через точку <i>O</i> параллельно прямым <i>AB</i> и <i>CD</i>, вторично пересекают <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> в точках <i>L</i> и <i>M</i> соответственно. На отрезках <i>OL</i> и <i>OM</i> выбраны соответственно точки <i>P</i> и <i>Q</i>, причём  <i>OP</i>...

Окружности <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> с центрам <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> соответственно пересекаются в точках <i>A</i> и <i>B</i>. Касательные к <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> в точке <i>A</i> пересекают отрезки <i>BO</i><sub>2</sub> и <i>BO</i><sub>1</sub> в точках <i>K</i> и <i>L</i> соответственно. Докажите, что  <i>KL || O</i><sub>1</sub><i>O</i><sub>2</sub>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка