Олимпиадные задачи из источника «2000-2001» для 7 класса
2000-2001
НазадМожно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?
Натуральное число <i>n</i> назовём хорошим, если каждое из чисел <i>n</i>, <i>n</i> + 1, <i>n</i> + 2 и <i>n</i> + 3 делится на сумму своих цифр. (Например, <i>n</i> = 60398 – хорошее.)
Обязательно ли предпоследней цифрой хорошего числа, оканчивающегося восьмеркой, будет девятка?
Уголком размера<i> n</i>×<i>m </i>, где<i> m,n<img src="/storage/problem-media/110080/problem_110080_img_2.gif"></i>2, называется фигура, получаемая из прямоугольника размера<i>n</i>×<i>m</i>клеток удалением прямоугольника размера (<i>n-</i>1)×(<i>m-</i>1) клеток. Два игрока по очереди делают ходы, заключающиеся в закрашивании в уголке произвольного ненулевого количества клеток, образующих прямоугольник или квадрат. Пропускать ход или красить одну клетку дважды нельзя. Проигрывает тот, после чьего хода все клетки уголка окажутся окрашенными. Кто из игроков победит при правильной игре?
Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.
<i> N </i>цифр – единицы и двойки – расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении<i> N </i>все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?
Существует ли такое натуральное число, что произведение всех его натуральных делителей (включая 1 и само число) оканчивается ровно на 2001 ноль?
Мишень представляет собой треугольник, разбитый тремя семействами параллельных прямых на 100 равных правильных треугольничков с единичными сторонами. Снайпер стреляет по мишени. Он целится в треугольничек и попадает либо в него, либо в один из соседних с ним по стороне. Он видит результаты своей стрельбы и может выбирать, когда стрельбу заканчивать. Какое наибольшее число треугольничков он может с гарантией поразить ровно пять раз?
Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?
Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа <i>a, b</i> и <i>c</i> (не обязательно различные) удовлетворяют условию 2000(<i>a + b</i>) = <i>c</i>, то они либо все одного цвета, либо трёх разных цветов.
Найдите все такие простые числа <i>p</i> и <i>q</i> , что <i>p + q</i> = (<i>p – q</i>)³.
В компании из 2<i>n</i> + 1 человека для любых <i>n</i> человек найдётся отличный от них человек, знакомый с каждым из них.
Докажите, что в этой компании есть человек, знающий всех.
Юра выложил в ряд 2001 монету достоинством 1, 2 и 3 копейки. Оказалось, что между любыми двумя копеечными монетами лежит хотя бы одна монета, между любыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между любыми двумя трехкопеечными монетами лежат хотя бы три монеты. Сколько у Юры могло быть трехкопеечных монет?
Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше?
Внутри выпуклого пятиугольника выбраны две точки. Докажите, что можно выбрать четырёхугольник с вершинами в вершинах пятиугольника так, что внутрь него попадут обе выбранные точки.