Олимпиадные задачи из источника «2000-2001» для 10 класса
2000-2001
НазадДокажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник.
Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат.
На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?
Множество клеток на клетчатой плоскости назовем <i>ладейно связным</i>, если из каждой его клетки можно попасть в любую другую, двигаясь по клеткам этого множества ходом ладьи (ладье разрешается перелетать через поля, не принадлежащие нашему множеству). Докажите, что ладейно связное множество из 100 клеток можно разбить на пары клеток, лежащих в одной строке или в одном столбце.
Даны целые числа <i>a, b</i> и <i>c, c ≠ b</i>. Известно, что квадратные трёхчлены <i>ax</i>² + <i>bx + c</i> и (<i>c – b</i>)<i>x</i>² + (<i>c – a</i>)<i>x</i> + (<i>a + b</i>) имеют общий корень (не обязательно целый). Докажите, что <i>a + b</i> + 2<i>c</i> делится на 3.
Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?
Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа <i>a, b</i> и <i>c</i> (не обязательно различные) удовлетворяют условию 2000(<i>a + b</i>) = <i>c</i>, то они либо все одного цвета, либо трёх разных цветов.
Длины сторон многоугольника равны <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>. Квадратный трёхчлен <i>f</i>(<i>x</i>) таков, что <i>f</i>(<i>a</i><sub>1</sub>) = <i>f</i>(<i>a</i><sub>2</sub> + ... + <i>a<sub>n</sub></i>).
Докажите, что если <i>A</i> – сумма длин нескольких сторон многоугольника, <i>B</i> – сумма длин остальных его сторон, то <i>f</i>(<i>A</i>) = <i>f</i>(<i>B</i>).
Докажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны.
На плоскости дано бесконечное множество точек<i> S </i>, при этом в любом квадрате1×1лежит конечное число точек из множества<i> S </i>. Докажите, что найдутся две разные точки<i> A </i>и<i> B </i>из<i> S </i>такие, что для любой другой точки<i> X </i>из<i> S </i>выполняются неравенства: <center><i>
|XA|,|XB|<img src="/storage/problem-media/110060/problem_110060_img_2.gif"> </i>0<i>,</i>999<i>|AB|. </i></center>
Докажите, что если у тетраэдра два отрезка, идущие из концов некоторого ребра в центры вписанных окружностей противолежащих граней, пересекаются, то отрезки, выпущенные из концов скрещивающегося с ним ребра в центры вписанных окружностей двух других граней, также пересекаются.
Дана последовательность<i> {x<sub>k</sub>} </i>такая, что<i> x<sub>1</sub>=</i>1,<i> x<sub>n+</sub></i>1<i>=n sin x<sub>n</sub>+</i>1. Докажите, что последовательность непериодична.
Приведённый квадратный трёхчлен <i>f</i>(<i>x</i>) имеет два различных корня. Может ли так оказаться, что уравнение <i>f</i>(<i>f</i>(<i>x</i>)) = 0 имеет три различных корня, а уравнение <i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))) = 0 – семь различных корней?
Найдите все такие нечётные натуральные <i>n</i> > 1, что для любых взаимно простых делителей <i>a</i> и <i>b</i> числа <i>n</i> число <i>a + b</i> – 1 также является делителем <i>n</i>.
Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)
Два многочлена <i>P</i>(<i>x</i>) = <i>x</i><sup>4</sup> + <i>ax</i>³ + <i>bx</i>² + <i>cx + d</i> и <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>px + q</i> принимают отрицательные значения на некотором интервале <i>I</i> длины более 2, а вне <i>I</i> – неотрицательны. Докажите, что найдётся такая точка <i>x</i><sub>0</sub>, что <i>P</i>(<i>x</i><sub>0</sub>) < <i>Q</i>(<i>x</i><sub>0</sub>).
Найдите все такие натуральные числа <i>n</i>, что для любых двух его взаимно простых делителей <i>a</i> и <i>b</i> число <i>a + b</i> – 1 также является делителем <i>n</i>.
В магическом квадрате <i>n×n</i>, составленном из чисел 1, 2, ..., <i>n</i>², центры каждых двух клеток соединили вектором в направлении от большего числа к меньшему. Докажите, что сумма всех полученных векторов равна нулю. (Магическим называется клетчатый квадрат, в клетках которого записаны числа так, что суммы чисел во всех его строках и столбцах равны.)
Многочлен <i>P</i>(<i>x</i>) = <i>x</i>³ + <i>ax</i>² + <i>bx + c</i> имеет три различных действительных корня, а многочлен <i>P</i>(<i>Q</i>(<i>x</i>)), где <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>x</i> + 2001, действительных корней не имеет. Докажите, что <i>P</i>(2001) > <sup>1</sup>/<sub>64</sub>.
В стране несколько городов, некоторые пары городов соединены дорогами, причём между каждыми двумя городами существует единственный несамопересекающийся путь по дорогам. Известно, что в стране ровно 100 городов, из которых выходит по одной дороге. Докажите, что можно построить 50 новых дорог так, что после этого даже при закрытии любой дороги можно будет из каждого города попасть в любой другой.
На прямой выбрано 100 множеств<i> A<sub>1</sub>, </i><i> A<sub>2</sub>, </i><i> .. , </i><i> A</i>100, каждое из которых является объединением 100 попарно непересекающихся отрезков. Докажите, что пересечение множеств<i> A<sub>1</sub>, </i><i> A<sub>2</sub>, </i><i> .. , </i><i> A</i>100является объединением не более 9901 попарно непересекающихся отрезков (точка также считается отрезком).
Сфера с центром в плоскости основания<i> ABC </i>тетраэдра<i> SABC </i>проходит через вершины<i> A </i>,<i> B </i>и<i> C </i>и вторично пересекает ребра<i> SA </i>,<i> SB </i>и<i> SC </i>в точках<i> A</i>1,<i> B</i>1и<i> C</i>1соответственно. Плоскости, касающиеся сферы в точках<i> A</i>1,<i> B</i>1и<i> C</i>1, пересекаются в точке<i> O </i>. Докажите, что<i> O </i>– центр сферы, описанной около тетраэдра<i> SA</i>1<i>B</i>1<i>C</i>1.
В стране 2001 город, некоторые пары городов соединены дорогами, причём из каждого города выходит хотя бы одна дорога и нет города, соединённого дорогами со всеми остальными. Назовём множество городов <i>D доминирующим</i>, если каждый не входящий в <i>D</i> город соединён дорогой с одним из городов множества <i>D</i>. Известно, что в каждом доминирующем множестве хотя бы <i>k</i> городов. Докажите, что страну можно разбить на 2001 – <i>k</i> республик так, что никакие два города из одной республики не будут соединены дорогой.
<i>a</i> и <i>b</i> – такие различные натуральные числа, что <i>ab</i>(<i>a + b</i>) делится на <i>a</i>² + <i>ab + b</i>². Докажите, что |<i>a – b</i>| > <img src="/storage/problem-media/109735/problem_109735_img_2.gif"> .
Приведенные квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) принимают отрицательные значения на непересекающихся интервалах.
Докажите, что найдутся такие положительные числа α и β, что для любого действительного <i>x</i> будет выполняться неравенство α<i>f</i>(<i>x</i>) + β<i>g</i>(<i>x</i>) > 0.