Олимпиадные задачи из источника «Окружная олимпиада (Москва)» для 9 класса - сложность 1 с решениями

В формулу линейной функции  <i>y = kx + b</i>  вместо букв <i>k</i> и <i>b</i> впишите числа от 1 до 20 (каждое по одному разу) так, чтобы получилось 10 функций, графики которых проходят через одну и ту же точку.

Сравните числа:  <i>А</i> = 2011·20122012·201320132013  и  <i>В</i> = 2013·20112011·201220122012.

Купец купил в Твери несколько мешков соли и продал их в Москве с прибылью в 100 рублей. На все вырученные деньги он снова купил в Твери соль (по тверской цене) и продал в Москве (по московской цене). На этот раз прибыль составила 120 рублей. Сколько денег он потратил на первую покупку?

На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?

Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля?  ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)

На рисунке изображен график приведённого квадратного трёхчлена (ось ординат стёрлась, расстояние между соседними отмеченными точками

равно 1). Чему равен дискриминант этого трёхчлена? <div align="center"><img src="/storage/problem-media/116482/problem_116482_img_2.gif"></div>

После возвращения цирка с гастролей, знакомые расспрашивали дрессировщика Казимира Алмазова о пассажирах его автофургона.

  – Тигры были?

  – Да, причём их было в семь раз больше, чем не тигров.

  – А обезьяны?

  – Да, их было в семь раз меньше, чем не обезьян.

  – А львы были?

Ответьте за Казимира Алмазова.

На столе белой стороной кверху лежали 100 карточек, у каждой из которых одна сторона белая, а другая чёрная. Костя перевернул 50 карточек, затем Таня перевернула 60 карточек, а после этого Оля – 70 карточек. В результате все 100 карточек оказались лежащими чёрной стороной вверх. Сколько карточек было перевернуто трижды?

Вычислите:   <img align="absmiddle" src="/storage/problem-media/116475/problem_116475_img_2.gif">

Коля и Вася за ноябрь получили по 15 оценок: тройки, четвёрки и пятёрки. При этом Коля получил пятёрок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, а троек столько же, сколько Вася пятёрок. Оказалось, что средний балл за ноябрь у мальчиков одинаковый. Сколько троек получил Коля в ноябре?

Графики функций  <i>у = х</i>² + <i>ах + b</i>  и  <i>у = х</i>² + <i>сх + d</i>  пересекаются в точке с координатами  (1, 1).  Сравните  <i>а</i><sup>5</sup> + <i>d</i><sup>6</sup>  и  <i>c</i><sup>6</sup> – <i>b</i><sup>5</sup>.

В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем?

Маша считает, что два арбуза тяжелее трёх дынь, Аня считает, что три арбуза тяжелее четырёх дынь. Известно, что одна из девочек права, а другая ошибается. Верно ли, что 12 арбузов тяжелее 18 дынь? (Считается, что все арбузы весят одинаково и все дыни весят одинаково.)

Существует ли натуральное число, кратное 2007, сумма цифр которого равна 2007?

Точка<i> M </i>лежит на стороне<i> BC </i>треугольника<i> ABC </i>. Известно, что радиус окружности, вписанной в треугольник<i> ABM </i>, в два раза больше радиуса окружности, вписанной в треугольник<i> ACM </i>. Может ли отрезок<i> AM </i>оказаться медианой треугольника<i> ABC </i>?

Найдите все такие функции  <i>f</i>(<i>x</i>), что  <i>f</i>(2<i>x</i> + 1) = 4<i>x</i>² + 14<i>x</i> + 7.

Остап Бендер и Киса Воробьянинов разделили между собой выручку от продажи слонов населению. Остап подумал: если бы я взял денег на 40% больше, то доля Кисы уменьшилась бы на 60%. А как изменилась бы доля Воробьянинова, если бы Остап взял себе денег на 50% больше?

Один градус шкалы Цельсия равен 1,8 градусов шкалы Фаренгейта, при этом 0° по Цельсию соответствует 32° по шкале Фаренгейта.

Может ли температура выражаться одинаковым числом градусов как по Цельсию, так и по Фаренгейту?

Решите уравнение:<div align="center"><img src="/storage/problem-media/104090/problem_104090_img_2.jpg"></div>

Решите уравнение: |<i>x</i>- 2005| + |2005 -<i>x</i>| = 2006.

Графики трёх функций  <i>y = ax + a,  y = bx + b</i>  и  <i>y = cx + d</i>  имеют общую точку, причём  <i>a ≠ b</i>.  Обязательно ли  <i>c = d</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка