Олимпиадные задачи из источника «Московская устная олимпиада по геометрии» - сложность 1 с решениями
Московская устная олимпиада по геометрии
НазадДан произвольный треугольник <i>ABC</i>. Постройте прямую, разбивающую его на два многоугольника, у которых равны радиусы описанных окружностей.
Дан остроугольный треугольник <i>ABC</i>. Прямая, параллельная <i>BC</i>, пересекает стороны <i>AB</i> и <i>AC</i> в точках <i>M</i> и <i>P</i> соответственно. При каком расположении точек <i>M</i> и <i>P</i> радиус окружности, описанной около треугольника <i>BMP</i>, будет наименьшим?
Дан параллелограмм <i>ABCD</i>. Прямая, параллельная <i>AB</i>, пересекает биссектрисы углов <i>A</i> и <i>C</i> в точках <i>P</i> и <i>Q</i> соответственно.
Докажите, что углы <i>ADP</i> и <i>ABQ</i> равны.
В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.<div align="center"><img src="/storage/problem-media/116184/problem_116184_img_2.gif"></div>
Дана прямоугольная полоска размером 12×1. Oклейте этой полоской в два слоя куб с ребром 1 (полоску можно сгибать, но нельзя надрезать).
B равнобедренном треугольнике <i>ABС</i> на боковой стороне <i>BС</i> отмечена точка <i>M</i> так, что отрезок <i>MС</i> равен высоте треугольника, проведённой к этой стороне, а на боковой стороне <i>AB</i> отмечена точка <i>K</i> так, что угол <i>KMС</i> – прямой. Hайдите угол <i>ACK</i>.
Биссектриса угла <i>B</i> и биссектриса внешнего угла <i>D</i> прямоугольника <i>ABCD</i> пересекают сторону <i>AD</i> и прямую <i>AB</i> в точках <i>M</i> и <i>K</i> соответственно.
Докажите, что отрезок <i>MK</i> равен и перпендикулярен диагонали прямоугольника.
Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?
B правильном шестиугольнике <i>ABCDEF</i> на прямой <i>AF</i> взята точка <i>X</i> так, что ∠<i>XCD</i> = 45°. Hайдите угол <i>FXE</i>.
Hа доске была нарисована система координат и отмечены точки <i>A</i>(1, 2) и <i>B</i>(3, 1). Cистему координат стерли.
Bосстановите ее по двум отмеченным точкам.
Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?
На рисунке изображен параллелограмм и отмечена точка <i>P</i> пересечения его диагоналей. Проведите через <i>P</i> прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб.<div align="center"><img src="/storage/problem-media/116078/problem_116078_img_2.png"></div>