Олимпиадные задачи из источника «Книги, журналы» для 11 класса - сложность 4 с решениями

Дан выпуклый многоугольник, никакие две стороны которого не параллельны. Для каждой из его сторон рассмотрим угол, под которым она видна из вершины, наиболее удалённой от прямой, содержащей эту сторону. Докажите, что сумма всех таких углов равна 180°.

Докажите, что если числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i>  отличны от нуля и для любого целого  <i>k</i> = 0, 1, ..., <i>n</i>  (<i>n < m</i> – 1)  выполняется равенство:

<i>a</i><sub>1</sub> + <i>a</i><sub>2</sub>·2<sup><i>k</i></sup> + <i>a</i><sub>3</sub>·3<sup><i>k</i></sup> + ... + <i>a<sub>m</sub>m<sup>k</sup></i> = 0,  то в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i> ...

Существует ли такое конечное множество <i>M</i> ненулевых действительных чисел, что для любого натурального <i>n</i> найдется многочлен степени не меньше <i>n</i> с коэффициентами из множества <i>M</i>, все корни которого действительны и также принадлежат <i>M</i>?

На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.

Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.

Рассматривается произвольный многоугольник (не обязательно выпуклый).

  а) Всегда ли найдётся хорда многоугольника, которая делит его на две равновеликие части?

  б) Докажите, что любой многоугольник можно разделить некоторой хордой на части, площадь каждой из которых не меньше чем &frac13; площади многоугольника. (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур.)

а) На стол положили (с перекрытиями) несколько одинаковых салфеток, имеющих форму правильного шестиугольника, причём у всех салфеток одна сторона параллельна одной и той же прямой. Всегда ли можно вбить в стол несколько гвоздей так, что все салфетки будут прибиты, причём каждая – только одним гвоздём?

б) Тот же вопрос про правильные пятиугольники.

Контуры выпуклых многоугольников <i>F</i> и <i>G</i> не имеют общих точек, причём <i>G</i> расположен внутри <i>F</i>. Хорду многоугольника <i>F</i> – отрезок, соединяющий две точки контура <i>F</i>, назовём опорной для <i>G</i>, если она пересекается с <i>G</i> только по точкам контура: содержит либо только вершину, либо сторону <i>G</i>.

  а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру <i>G</i>.

  б) Докажите, что найдутся две такие хорды.

  а) Четыре порта 1, 2, 3, 4 расположены (в этом порядке) на окружности круглого острова. Их связывает плоская сеть дорог, на которых могут быть перекрёстки, то есть точки, где пересекаются, сходятся или разветвляются дороги. На всех участках дорог введено одностороннее движение так, что, выехав от любого порта или перекрёстка, нельзя вернуться в него снова. Пусть  <i>f<sub>ij</sub></i>  означает число различных путей, идущих из порта <i>i</i> в порт <i>j</i>. Докажите неравенство   <i>f</i><sub>14</sub><i>f</i><sub>23</sub> ≥ <i>f</i><sub>13</sub><i>f</i><sub>24</sub>.

  б) Докажите, что если портов шесть: 1, 2, 3, 4, 5, 6 (по кругу в этом поря...

Докажите, что не существует никакой (даже разрывной) функции  <i>y = f</i>(<i>x</i>),  для которой  <i>f</i>(<i>f</i>(<i>x</i>)) = <i>x</i>² – 1996  при всех <i>x</i>.

В некотором государстве человек может быть зачислен в полицию только в том случае, если он выше ростом чем 80% (или больше) его соседей. Чтобы доказать свое право на зачисление в полицию, человек сам называет число <i>R</i> (радиус), после чего его "соседями" считаются все, кто живёт на расстоянии меньше <i>R</i> от него (число соседей, разумеется, должно быть не нулевое). В этом же государстве человек освобождается от службы в армии только в том случае, если он ниже ростом, чем 80% (или больше) его соседей. Определение "соседей" аналогично; человек сам называет число <i>r</i> (радиус) и т. д., причём <i>R</i> и <i>r</i> не обязательно совпадают. Может ли случиться, что не менее 90% населения имеют право на зач...

Число рёбер многогранника равно 100.

  а) Какое наибольшее число рёбер может пересечь плоскость, не проходящая через его вершины, если многогранник выпуклый?

  б) Докажите, что для невыпуклого многогранника это число может равняться 96,

  в) но не может равняться 100.

  Для каждого натурального <i>n</i> обозначим через <i>P</i>(<i>n</i>) число разбиений <i>n</i> в сумму натуральных слагаемых (разбиения, отличающиеся лишь порядком слагаемых, считаются одинаковыми; например,  <i>P</i>(4) = 5,  потому что  4 = 4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1  – пять способов).

  а) Количество различных чисел в данном разбиении назовем его <i>разбросом</i> (например, разбиение  4 = 1 + 1 + 2  имеет разброс 2, потому что в этом разбиении два различных числа). Докажите, что сумма <i>Q</i>(<i>n</i>) разбросов всех разбиений числа <i>n</i> равна   1 + <i>P</i>(1) + <i>P</i>(2) + ... + <i>P</i>(<i>n</i>–1)....

По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (<i>k</i>-й и (<i>k</i>+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (<i>k</i>–1)-ю и (<i>k</i>+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)

а) Доказать, что для любых положительных чисел  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>k</sub></i>  (<i>k</i> > 3)  выполняется неравенство: <div align="center"><img src="/storage/problem-media/97781/problem_97781_img_2.gif"></div>б) Доказать, что это неравенство ни для какого  <i>k</i> > 3  нельзя усилить, то есть доказать, что для каждого фиксированного <i>k</i> нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из <i>k</i> положительных чисел.

<i>N</i> друзей одновременно узнали <i>N</i> новостей, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями.

Каждый разговор длится 1 час. За один разговор можно передать сколько угодно новостей.

Какое минимальное количество часов необходимо, чтобы все узнали все новости? Рассмотрите три случая:

  а)  <i>N</i> = 64,

  б)  <i>N</i> = 55,

  в)  <i>N</i> = 100.

В таблице <i>N</i>×<i>N</i>, заполненной числами, все строки различны (две строки называются различными, если они отличаются хотя бы в одном элементе).

Докажите, что из таблицы можно вычеркнуть некоторый столбец так, что в оставшейся таблице опять все строки будут различны.

Куб размером10×10×10 сложен из 500 чёрных и 500 белых кубиков в шахматном порядке (кубики, примыкающие друг к другу гранями, имеют различные цвета). Из этого куба вынули 100 кубиков так, чтобы в каждом из 300 рядов размером1×1×10, параллельных какому-нибудь ребру куба, не хватало ровно одного кубика. Докажите, что число вынутых чёрных кубиков делится на 4.

На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается.

Найдите все положительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub>10</sub>, удовлетворяющие при всех  <i>k</i> = 1, 2,..., 10  условию   (<i>x</i><sub>1</sub> + ... + <i>x<sub>k</sub></i>)(<i>x<sub>k</sub> + ... + x</i><sub>10</sub>) = 1.

а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа <i>x</i> и <i>y</i>, что  0 ≤ <img width="38" height="35" align="MIDDLE" border="0" src="/storage/problem-media/79520/problem_79520_img_2.gif"> ≤ 1.

б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?

В пространстве расположены 2<i>n</i> точек, никакие четыре из которых не лежат в одной плоскости. Проведены  <i>n</i>² + 1  отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют

  а) хотя бы один треугольник;

  б) не менее <i>n</i> треугольников.

За круглым столом сидят <i>n</i> человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?

Три прямолинейных коридора одинаковой длины <i>l</i> образуют фигуру, изображённую на рисунке. По ним бегают гангстер и полицейский. Максимальная скорость полицейского в 2 раза больше максимальной скорости гангстера. Полицейский сможет увидеть гангстера, если он окажется от него на расстоянии, не большем <i>r</i>. Доказать, что полицейский всегда может поймать гангстера, если:   а)  <i>r > <sup>l</sup></i>/<sub>3</sub>;   б)   <i>r > <sup>l</sup></i>/<sub>4</sub>;   в)   <i>r > <sup>l</sup></i>/<sub>5</sub>;   г)   <i>r > <sup>l</sup></i>/<sub>7</sub>. <div align="center"><img width="150&q...

а) Существует ли последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и  <i>a<sub>n</sub> ≤ n</i><sup>10</sup>  при любом <i>n</i>? б) Тот же вопрос, если  <i>a<sub>n</sub> ≤ n</i><img width="27" height="33" align="MIDDLE" border="0" src="/storage/problem-media/79370/problem_79370_img_2.gif">  при любом <i>n</i>.

Существует ли такое натуральное число <i>A</i>, что если приписать его к самому себе справа, то полученное число окажется полным квадратом?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка