Олимпиадные задачи из источника «1973 год» для 5-10 класса - сложность 2-3 с решениями

У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые.

В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?

Лист клетчатой бумаги размером<i>N</i>×<i>N</i>раскрасили в<i>N</i>цветов. (Каждую клеточку закрасили одним из этих<i>N</i>цветов или не закрасили вообще). "Правильной" раскраской называется такая, что в каждом столбце и в каждой строке нет двух клеточек одинакового цвета. Можно ли докрасить лист "правильным" способом, если сначала было "правильно" закрашено а)<i>N</i><sup>2</sup>- 1 клетка? б)<i>N</i><sup>2</sup>- 2 клетки? в)<i>N</i>клеток?

На бумагу поставили кляксу. Для каждой точки кляксы определили наименьшее и наибольшее расстояние до границы кляксы. Среди всех наименьших расстояний выбрали наибольшее, а среди наибольших выбрали наименьшее и сравнили полученные два числа. Какую форму имеет клякса, если эти два числа равны между собой?

Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.

Грани кубика занумерованы 1, 2, 3, 4, 5, 6, так, что сумма номеров на противоположных гранях кубика равна 7. Дана шахматная доска 50×50 клеток, каждая клетка равна грани кубика. Кубик перекатывается из левого нижнего угла доски в правый верхний. При перекатывании он каждый раз переваливается через свое ребро на соседнюю клетку, при этом разрешается двигаться только вправо или вверх (нельзя двигаться влево или вниз). На каждой из клеток на пути кубика имеется номер грани, которая опиралась на эту клетку. Какое наибольшее значение может принимать сумма всех написанных чисел? Какое наименьшее значение она может принимать?

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик <i>A</i> прыгает через кузнечика <i>B</i>, то после прыжка он оказывается от <i>B</i> на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

На плоскости даны две точки <i>A</i> и <i>B</i>. Пусть <i>C</i> – некоторая точка плоскости, равноудалённая от точек <i>A</i> и <i>B</i>. Построим последовательность точек

<i>C</i><sub>1</sub> = <i>C, C</i><sub>2</sub>, <i>C</i><sub>3</sub>, ...,  где <i>C</i><sub><i>n</i>+1</sub> – центр описанной окружности треугольника <i>ABC<sub>n</sub></i>. При каком положении точки <i>C</i>

  а) точка <i>C<sub>n</sub></i> попадёт в середину отрезка <i>AB</i> (при этом <i>C</i><sub><i>n</i>+1</sub> и дальнейшие члены последова...

а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры. б) Даны натуральные числа <i>k</i> и <i>n</i>, причём  1 < <i>k < n</i>.  Для какого наименьшего <i>m</i> верно следующее утверждение: при любой расстановке <i>m</i> ладей на доске размером <i>n×n</i> клеток можно выбрать <i>k</i> ладей из этих <i>m</i> так, чтобы никакие две из этих выбранных ладей не били друг друга?

а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?

Решите в натуральных числах уравнение  <i>n<sup>x</sup> + n<sup>y</sup> = n<sup>z</sup></i>.

Натуральное число называют совершенным, если оно равно сумме всех своих делителей, кроме самого этого числа. (Например, число 28 – совершенное:  28 = 1 + 2 + 4 + 7 + 14.)  Докажите, что совершенное число не может быть полным квадратом.

Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)

В пространстве заданы четыре точки, не лежащие в одной плоскости.

Сколько существует различных параллелепипедов, для которых эти точки служат вершинами?

<i>n</i> человек не знакомы между собой. Нужно так познакомить друг с другом некоторых из них, чтобы ни у каких трёх людей не оказалось одинакового числа знакомых. Докажите, что это можно сделать при любом <i>n</i>.

Квадратный трёхчлен  <i>f</i>(<i>x</i>) = <i>ax</i>² + <i>bx + c</i>  таков, что уравнение  <i>f</i>(<i>x</i>) = <i>x</i>  не имеет вещественных корней. Докажите, что уравнение  <i>f</i>(<i>f</i>(<i>x</i>)) = <i>x</i>  также не имеет вещественных корней.

На суде в качестве вещественного доказательства предъявлено<nobr>14 монет.</nobr>Эксперт обнаружил, что семь из<nobr>них —</nobr>фальшивые,<nobr>остальные —</nobr>настоящие, причём узнал, какие именно фальшивые, а<nobr>какие —</nobr>настоящие. Суд же знает только, что фальшивые монеты весят одинаково, настоящие монеты весят одинаково, а фальшивые легче настоящих. Эксперт хочет тремя взвешиваниями на чашечных весах без гирь доказать суду, что все обнаруженные им фальшивые монеты действительно фальшивые, а<nobr>остальные —</nobr>настоящие. Сможет ли он это сделать?

Дано <i>n</i> точек,  <i>n</i> > 4.  Докажите, что можно соединить их стрелками так, чтобы из каждой точки в любую другую можно было попасть, пройдя либо по одной стрелке, либо по двум (каждые две точки можно соединить стрелкой только в одном направлении; идти по стрелке можно только в указанном на ней направлении).

Известно, что разность между наибольшим и наименьшим из чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, ..., <i>x</i><sub>9</sub>, <i>x</i><sub>10</sub> равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел <i>x</i><sub>1</sub>,  ½ (<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub>),  &frac13; (<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + <i>x</i><sub>3</sub>),  ...,  <sup>1</sup>/<sub>10</sub> (<i>x</i><sub>1<...

Дана бесконечная последовательность цифр. Докажите, что для любого натурального числа <i>n</i>, взаимно простого с числом 10, можно указать такую группу стоящих подряд цифр последовательности, что записываемое этими цифрами число делится на <i>n</i>.

24 студента решали 25 задач. У преподавателя есть таблица размером 24×25, в которой записано, кто какие задачи решил. Оказалось, что каждую задачу решил хотя бы один студент. Докажите, что

  а) можно отметить некоторые задачи "галочкой" так, что каждый из студентов решил чётное число (в частности, может быть, нуль) отмеченных задач;

  б) можно отметить некоторые из задач знаком "+", а некоторые из остальных – знаком "–" и приписать каждой задаче некоторое натуральное число баллов так, чтобы каждый студент набрал поровну баллов за задачи, отмеченные знаками "+" и "–".

Из последовательности  <i>a</i>,  <i>a + d,  a</i> + 2<i>d,  a</i> + 3<i>d</i>, ...,  являющейся бесконечной арифметической прогрессией, где <i>d</i> не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение <sup><i>a</i></sup>/<sub><i>d</i></sub>  рационально. Докажите это.

а) Докажите, что   <img align="absmiddle" src="/storage/problem-media/73734/problem_73734_img_2.gif">   (сумма берётся по всем целым <i>i</i>, 0 ≤ <i>i ≤ <sup>n</sup></i>/<sub>2</sub>). б) Докажите, что если <i>p</i> и <i>q</i> – различные числа и  <i>p + q</i> = 1,  то <div align="center"><img src="/storage/problem-media/73734/problem_73734_img_3.gif"></div>

В прямоугольную таблицу из <i>m</i> строк и <i>n</i> столбцов записаны <i>mn</i> положительных чисел. Найдём в каждом столбце произведение чисел и сложим все <i>n</i> таких произведений. Докажите, что если переставить числа в каждой строке в порядке возрастания, то сумма аналогичных произведений будет не меньше, чем в первоначальной. Решите эту задачу для

  а)  <i>m = n</i> = 2;

  б)  <i>m</i> = 2  и произвольного <i>n</i>;

  в) любых натуральных <i>m</i> и <i>n</i>.

Даны два взаимно простых натуральных числа <i>a</i> и <i>b</i>. Рассмотрим множество <i>M</i> целых чисел, представимых в виде  <i>ax + by</i>,  где <i>x</i> и <i>y</i> – целые неотрицательные числа.

  а) Каково наибольшее целое число <i>c</i>, не принадлежащее множеству <i>М</i>?

  б) Докажите, что из двух чисел <i>n</i> и  <i>с</i> – <i>n</i>  (где <i>n</i> – любое целое) одно принадлежит <i>М</i>, а другое нет.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка