Олимпиадные задачи из источника «Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки» для 7 класса
Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки
НазадМальчик Стёпа говорит: позавчера мне было 10 лет, а в следующем году мне исполнится 13. Может ли такое быть?
Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?
На прямой сидят три кузнечика, каждую секунду прыгает один кузнечик. Он прыгает через какого-нибудь кузнечика (но не через двух сразу).
Докажите, что через 1985 секунд они не могут вернуться в исходное положение.
На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?
Как при помощи чашечных весов без гирь разделить 24 кг гвоздей на две части — 9 и 15 кг?
Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он?
Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?
Докажите, что ½ – ⅓ + ¼ – ⅕ + ... + <sup>1</sup>/<sub>98</sub> – <sup>1</sup>/<sub>99</sub> + <sup>1</sup>/<sub>100</sub> > ⅕.
В узлах клетчатой плоскости отмечено пять точек. Доказать, что есть две из них, середина отрезка между которыми тоже попадает в узел.
Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.
<i>a, b, c</i> – такие три числа, что <i>a + b + c</i> = 0. Доказать, что в этом случае справедливо соотношение <i>ab + ac + bc</i> ≤ 0.
Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений),<nobr>а) проигрывает;</nobr><nobr>б) выигрывает.</nobr>Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?
Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры.
Сколько существует четырёхзначных "симпатичных" чисел?
Сколько существует девятизначных чисел, сумма цифр которых чётна?
Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?
Сколько существует шестизначных чисел, в записи которых есть хотя бы одна чётная цифра?
Алфавит племени Мумбо-Юмбо состоит из трёх букв. Словом является любая последовательность, состоящая не более чем из четырёх букв.
Сколько слов в языке племени Мумбо-Юмбо?
а) В Стране Чудес есть три города <i>A</i>, <i>B</i> и <i>C</i>. Из города <i>A</i> в город <i>B</i> ведет 6 дорог, а из города <i>B</i> в город <i>C</i> – 4 дороги.
Сколькими cпособами можно проехать от <i>A</i> до <i>C</i>?
б) В Стране Чудес построили еще один город <i>D</i> и несколько новых дорог – две из <i>A</i> в <i>D</i> и две из <i>D</i> в <i>C</i>.
Сколькими способами можно теперь добраться из города <i>A</i> в город <i>C</i>?
На столе стоят семь стаканов – все вверх дном. За один ход можно перевернуть любые четыре стакана.
Можно ли за несколько ходов добиться того, чтобы все стаканы стояли правильно?
Можно ли так расставить знаки "+" или "–" между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?
В таблице 25×25 расставлены целые числа так, что в каждом столбце и в каждой строчке встречаются все числа от 1 до 25. При этом таблица симметрична относительно главной диагонали. Доказать, что на главной диагонали все числа от 1 до 25 встречаются по одному разу.
Докажите, что если <i>x + y + z ≥ xyz</i>, то <i>x</i>² + <i>y</i>² + <i>z</i>² ≥ <i>xyz</i>.
Докажите, что три неравенства <img align="MIDDLE" src="/storage/problem-media/30927/problem_30927_img_2.gif"> не могут быть все верны одновременно, если числа<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,<i>a</i><sub>3</sub>,<i>b</i><sub>1</sub>,<i>b</i><sub>2</sub>,<i>b</i><sub>3</sub>положительны.
<i>a, b, c, d</i> – положительные числа. Докажите, что по крайней мере одно из неравенств
1) <i>a + b < c + d</i>;
2) (<i>a + b</i>)<i>cd < ab</i>(<i>c + d</i>);
3) (<i>a + b</i>)(<i>c + d</i>) < <i>ab + cd</i>
неверно.
<i>x, y</i> > 0. Через <i>S</i> обозначим наименьшее из чисел <i>x</i>, <sup>1</sup>/<sub><i>y</i></sub>, <i>y</i> + <sup>1</sup>/<sub><i>x</i></sub>. Какое максимальное значение может принимать величина <i>S</i>?