Олимпиадные задачи по теме «Принцип крайнего» для 9 класса - сложность 3 с решениями
Принцип крайнего
НазадДаны <i>n</i> + 1 попарно различных натуральных чисел, меньших 2<i>n</i> (<i>n</i> > 1).
Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.
Рациональные числа <i>x, y</i> и <i>z</i> таковы, что все числа <i>x + y</i>² + <i>z</i>², <i>x</i>² + <i>y</i> + <i>z</i>² и <i>x</i>² + <i>y</i>² + <i>z</i> целые. Докажите, что число 2<i>x</i> целое.
На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.
Какое наименьшее количество нулей может быть среди этих чисел?
В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма <i>k</i> наибольших чисел равна <i>a</i>, а в каждом столбце таблицы сумма <i>k</i> наибольших чисел равна <i>b</i>.
а) Докажите, что если <i>k</i> = 2, то <i>a = b</i>.
б) В случае <i>k</i> = 3 приведите пример такой таблицы, для которой <i>a ≠ b</i>.
На доске выписано (<i>n</i> – 1)<i>n</i> выражений: <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub>, <i>x</i><sub>1</sub> – <i>x</i><sub>3</sub>, ..., <i>x</i><sub>1</sub> – <i>x<sub>n</sub></i>, <i>x</i><sub>2</sub> – <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub> – <i>x</i><sub>3</sub>, ..., <i>x</i><sub>2</sub> – <i>x<sub>n</sub></i>, ..., <i>x<sub>n</sub></i> – <i>x</i><sub><i>n</i>–1</sub>, где <i>n</i&...
В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что <i>a = b</i>.
На кольцевом треке 2<i>n</i> велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее <i>n</i>² встреч.
Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.
Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений. а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).
На плоскости задано <i>n</i> точек, являющихся вершинами выпуклого <i>n</i>-угольника, <i>n</i> > 3. Известно, что существует ровно <i>k</i> равносторонних треугольников со стороной 1, вершины которых – заданные точки.
а) Докажите, что <i>k</i> < <sup>2<i>n</i></sup>/<sub>3</sub>.
б) Приведите пример конфигурации, для которой <i>k</i> > 0,666<i>n</i>.
Дано множество точек <i>O, A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A<sub>n</sub></i> на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют такие векторы <i><b>x</b></i> и <i><b>y</b></i>, что для любой точки <i>A<sub>i</sub></i> выполняется равенство <img align="abs" src="/storage/problem-media/115863/problem_115863_img_2.gif"> где <i>k</i> и <i>l</i> – некоторые целые числа.
В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.
В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза.
На кольцо свободно нанизано 2009 бусинок. За один ход любую бусинку можно передвинуть так, чтобы она оказалась ровно посередине между двумя соседними. Существуют ли такие изначальная расстановка бусинок и последовательность ходов, при которых какая-то бусинка пройдёт хотя бы один полный круг?
Квадрат разрезали на конечное число прямоугольников. Обязательно ли найдётся отрезок, соединяющий центры (точки пересечения диагоналей) двух прямоугольников, не имеющий общих точек ни с какими другими прямоугольниками, кроме этих двух?
Найдите все такие тройки действительных чисел <i>x, y, z</i>, что 1 + <i>x</i><sup>4</sup> ≤ 2(<i>y – z</i>)² 1 + <i>y</i><sup>4</sup> ≤ 2(<i>z – x</i>)², 1 + <i>z</i><sup>4</sup> ≤ 2(<i>x – y</i>)².
Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?
На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?
В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета.
Существуют ли такие простые числа <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, ..., <i>p</i><sub>2007</sub>, что <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_2.gif"> делится на <i>p</i><sub>2</sub>, <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_3.gif"> делится на <i>p</i><sub>3</sub>, ..., <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_4.gif"> делится на <i>p</i><sub>1</sub>?
На столе лежат <i>N</i> > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого <i>N</i> выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.
Существует ли выпуклый многоугольник, у которого каждая сторона равна какой-нибудь диагонали, а каждая диагональ– какой-нибудь стороне?
<i>a</i> и <i>b</i> – натуральные числа. Покажите, что если 4<i>ab</i> – 1 делит (4<i>a</i>² – 1)², то <i>a = b</i>.
На клетчатой бумаге нарисован прямоугольник, стороны которого образуют углы в 45° с линиями сетки, а вершины не лежат на линиях сетки.
Может ли каждую сторону прямоугольника пересекать нечётное число линий сетки?
Может ли в наборе из шести чисел (<i>a, b, c</i>, <sup><i>a</i>²</sup>/<sub><i>b</i></sub>, <sup><i>b</i>²</sup>/<sub><i>c</i></sub>, <sup><i>c</i>²</sup>/<sub><i>a</i></sub>}, где <i>a, b, c</i> – положительные числа, оказаться ровно три различных числа?