Олимпиадные задачи по теме «Математический анализ» для 9 класса - сложность 2-3 с решениями
Пусть <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub><i>n</i></sub> – некоторые числа, принадлежащие отрезку [0, 1].
Докажите, что на этом отрезке найдется такое число <i>x</i>, что <sup>1</sup>/<sub><i>n</i></sub> (|<i>x – x</i><sub>1</sub>| + |<i>x – x</i><sub>2</sub>| + ... + |<i>x – x<sub>n</sub></i>|) = ½.
На доске написаны девять приведённых квадратных трёхчленов: <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>, <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>, ..., <i>x</i>² + <i>a</i><sub>9</sub><i>x + b</i><sub>9</sub>. Известно, что последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>9</sub> и <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b</i><sub>9</sub> – арифметические прогрессии. Оказалось, что сумма все...
Решите неравенство: [<i>x</i>]·{<i>x</i>} < <i>x</i> – 1.
Существуют ли такие значения <i>a</i> и <i>b</i>, при которых уравнение <i>х</i><sup>4</sup> – 4<i>х</i><sup>3</sup> + 6<i>х</i>² + <i>aх + b</i> = 0 имеет четыре различных действительных корня?
Последовательность чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... задана условиями <i>a</i><sub>1</sub> = 1, <i>a</i><sub>2</sub> = 143 и <img align="absmiddle" src="/storage/problem-media/116589/problem_116589_img_2.gif"> при всех <i>n</i> ≥ 2.
Докажите, что все члены последовательности – целые числа.
Ненулевые числа <i>a</i>, <i>b</i>, <i>c</i> таковы, что каждые два из трёх уравнений <i>ax</i><sup>11</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0, <i>bx</i><sup>11</sup> + <i>cx</i><sup>4</sup> + <i>a</i> = 0, <i>cx</i><sup>11</sup> + <i>ax</i><sup>4</sup> + <i>b</i> = 0 имеют общий корень. Докажите, что все три уравнения имеют общий корень.
Функция <i>f</i>(<i>x</i>) определена на положительной полуоси и принимает только положительные значения. Известно, что <i>f</i>(1) + <i>f</i>(2) = 10 и <img align="absmiddle" src="/storage/problem-media/116433/problem_116433_img_2.gif"> при любых <i>а</i> и <i>b</i>. Найдите <i>f</i>(2<sup>2011</sup>).
Целые числа <i>m</i> и <i>n</i> таковы, что сумма <img align="absmiddle" src="/storage/problem-media/116373/problem_116373_img_2.gif"> целая. Верно ли, что оба слагаемых целые?
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
Функция <i>f</i>(<i>x</i>) определена для всех <i>x</i>, кроме 1, и удовлетворяет равенству: <img align="absmiddle" src="/storage/problem-media/116003/problem_116003_img_2.gif">. Найдите <i>f</i>(–1).
Докажите, что если выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_2.gif"> </i>принимает рациональное значение, то и выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_3.gif"> </i>также принимает рациональное значение.
В бесконечной последовательности (<i>x<sub>n</sub></i>) первый член <i>x</i><sub>1</sub> – рациональное число, большее 1, и <i>x</i><sub><i>n</i>+1</sub> = <i>x<sub>n</sub></i> + <sup>1</sup>/<sub>[<i>x<sub>n</sub></i>]</sub> при всех натуральных <i>n</i>.
Докажите, что в этой последовательности есть целое число.
Дан квадратный трёхчлен <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>. Известно, что для любого вещественного <i>x</i> существует такое вещественное <i>y</i>, что <i>f</i>(<i>y</i>) = <i>f</i>(<i>x</i>) + <i>y</i>. Найдите наибольшее возможное значение <i>a</i>.
Последовательность(<i>a<sub>n</sub></i>)задана условиями<i> a<sub>1</sub>= </i>1000000,<i> a<sub>n+</sub></i>1<i>=n</i>[<i><img align="absmiddle" src="/storage/problem-media/111805/problem_111805_img_2.gif"></i>]<i>+n </i>. Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.
При каких натуральных <i>n</i> найдутся такие положительные рациональные, но не целые числа <i>a</i> и <i>b</i>, что оба числа <i>a + b</i> и <i>a<sup>n</sup> + b<sup>n</sup></i> – целые?
Докажите, что для каждого<i> x </i>такого, что<i> sin x<img src="/storage/problem-media/110210/problem_110210_img_2.gif"> </i>0, найдется такое натуральное<i> n </i>, что<i> | sin nx| <img src="/storage/problem-media/110210/problem_110210_img_3.gif"> <img src="/storage/problem-media/110210/problem_110210_img_4.gif"> </i>.
Функции <i>f</i>(<i>x</i>) – <i>x</i> и <i>f</i>(<i>x</i>²) – <i>x</i><sup>6</sup> определены при всех положительных <i>x</i> и возрастают.
Докажите, что функция <img align="absmiddle" src="/storage/problem-media/110122/problem_110122_img_2.gif"> также возрастает при всех положительных <i>x</i>.
Ненулевые числа <i>a</i> и <i>b</i> удовлетворяют равенству <i>a</i>²<i>b</i>²(<i>a</i>²<i>b</i>² + 4) = 2(<i>a</i><sup>6</sup> + <i>b</i><sup>6</sup>). Докажите, что хотя бы одно из них иррационально.
По данному натуральному числу <i>a</i><sub>0</sub> строится последовательность {<i>a<sub>n</sub></i>} следующим образом <img align="absmiddle" src="/storage/problem-media/110036/problem_110036_img_2.gif"> если <i>a<sub>n</sub></i> нечётно, и <sup><i>a</i><sub>0</sub></sup>/<sub>2</sub>, если <i>a<sub>n</sub></i> чётно. Докажите, что при любом нечётном <i>a</i><sub>0</sub> > 5 в последовательности {<i>a<sub>n</sub></i>} встретятся сколь угодно большие числа.
Решите уравнение {(<i>x</i> + 1)³} = <i>x</i>³.
Многочлен <i>P</i>(<i>x</i>) степени <i>n</i> имеет <i>n</i> различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?
Существует ли ограниченная функция<i> f </i>:<i> <img src="/storage/problem-media/109819/problem_109819_img_2.gif"><img src="/storage/problem-media/109819/problem_109819_img_3.gif"><img src="/storage/problem-media/109819/problem_109819_img_2.gif"> </i>такая, что<i> f</i>(1)<i>></i>0и<i> f</i>(<i>x</i>)удовлетворяет при всех<i> x,y<img src="/storage/problem-media/109819/problem_109819_img_4.gif"><img src="/storage/problem-media/109819/problem_109819_img_2.gif"> </i>неравенству <center><i>
f<sup>2</sup></i>(<i>x+y</i>)<i><img src="/storage/problem-media/109819/problem_109...
Какое наибольшее конечное число корней может иметь уравнение <center><i>
|x-a<sub>1</sub>|+..+|x-a</i>50<i>|=|x-b<sub>1</sub>|+..+|x-b</i>50<i>|,
</i></center> где<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a</i>50,<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> b</i>50– различные числа?
Существуют ли такие попарно различные натуральные числа <i>m, n, p, q</i>, что <i>m + n = p + q</i> и <img align="absmiddle" src="/storage/problem-media/109812/problem_109812_img_2.gif">
Числовое множество <i>M</i>, содержащее 2003 различных числа, таково, что для каждых двух различных элементов <i>a, b</i> из <i>M</i> число
<img align="absmiddle" src="/storage/problem-media/109787/problem_109787_img_2.gif"> рационально. Докажите, что для любого <i>a</i> из <i>M</i> число <img align="absmiddle" src="/storage/problem-media/109787/problem_109787_img_3.gif"> рационально.