Олимпиадные задачи по теме «Геометрия» для 11 класса - сложность 4 с решениями
Точка <i>E</i> – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника <i>ABC</i> с его вершиной <i>A</i>. Вписанная окружность этого треугольника касается сторон <i>AB</i> и <i>AC</i> в точках <i>C'</i> и <i>B'</i> соответственно. Докажите, что точка <i>F</i>, симметричная точке <i>E</i> относительно прямой <i>B'C'</i>, лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника <i>ABC</i>.
Касательные, проведённые к описанной окружности остроугольного треугольника <i>ABC</i> в точках <i>A</i> и <i>C</i>, пересекаются в точке <i>Z. AA</i><sub>1</sub>, <i>CC</i><sub>1</sub> – высоты. Прямая <i>A</i><sub>1</sub><i>C</i><sub>1</sub> пересекает прямые <i>ZA, ZC</i> в точках <i>X</i> и <i>Y</i> соответственно. Докажите, что описанные окружности треугольников <i>ABC</i> и <i>XYZ</i> касаются.
а) В бесконечной последовательности бумажных прямоугольников площадь <i>n</i>-го прямоугольника равна <i>n</i>². Обязательно ли можно покрыть ими плоскость? Наложения допускаются.б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа <i>N</i> найдутся квадраты суммарной площади больше <i>N</i>?
Про бесконечный набор прямоугольников известно, что в нём для любого числа <i>S</i> найдутся прямоугольники суммарной площади больше <i>S</i>.
а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?
б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.
Дан неравнобедренный треугольник <i>ABC</i>. Пусть <i>N</i> – середина дуги <i>BAC</i> его описанной окружности, а <i>M</i> – середина стороны <i>BC</i>. Обозначим через <i>I</i><sub>1</sub> и <i>I</i><sub>2</sub> центры вписанных окружностей треугольников <i>ABM</i> и <i>ACM</i> соответственно. Докажите, что точки <i>I</i><sub>1</sub>, <i>I</i><sub>2</sub>, <i>A</i>, <i>N</i> лежат на одной окружности.
По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.
100 красных точек разделили синюю окружность на 100 дуг, длины которых являются всеми натуральными числами от 1 до 100 в произвольном порядке. Докажите, что существуют две перпендикулярные хорды с красными концами.
Боковые стороны <i>AB</i> и <i>CD</i> трапеции <i>ABCD</i> являются соответственно хордами окружностей ω<sub>1</sub> и ω<sub>2</sub>, касающихся друг друга внешним образом. Градусные меры касающихся дуг <i>AB</i> и <i>CD</i> равны α и β. Окружности ω<sub>3</sub> и ω<sub>4</sub> также имеют хорды <i>AB</i> и <i>CD</i> соответственно. Их дуги <i>AB</i> и <i>CD</i>, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω<sub>3</sub> и ω<sub>4</sub> тоже касаются.
Пусть <i>I</i> – центр вписанной окружности неравнобедренного треугольника <i>ABC</i>. Через <i>A</i><sub>1</sub> обозначим середину дуги <i>BC</i> описанной окружности треугольника <i>ABC</i>, не содержащей точки <i>A</i>, а через <i>A</i><sub>2</sub> – середину дуги <i>BAC</i>. Перпендикуляр, опущенный из точки <i>A</i><sub>1</sub> на прямую <i>A</i><sub>2</sub><i>I</i>, пересекает прямую <i>BC</i> в точке <i>A'</i>. Аналогично определяются точки <i>B'</i> и <i>C'</i>.
а) Докажите, что точки <i>A'</i>, <i>B'</i>...
По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.
Рассматриваются ортогональные проекции данного правильного тетраэдра с единичным ребром на всевозможные плоскости. Какое наибольшее значение может принимать радиус круга, содержащегося в такой проекции?
Oснованием пирамиды служит выпуклый четырехугольник. Oбязательно ли существует сечение этой пирамиды, не пересекающее основание и являющееся вписанным четырехугольником?
Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?
Пусть <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> – высоты неравнобедренного остроугольного треугольника <i>ABC</i>; описанные окружности треугольников <i>ABC</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i>, вторично пересекаются в точке <i>P</i>, <i>Z</i> – точка пересечения касательных к описанной окружности треугольника <i>ABC</i>, проведённых в точках <i>A</i> и <i>B</i>. Докажите, что прямые <i>AP</i>, <i>BC</i> и <i>ZC</i><sub>1</sub> пересекаются в одной точке.
Дан треугольник <i>ABC</i> и точки <i>P</i> и <i>Q</i>. Известно, что треугольники, образованные проекциями <i>P</i> и <i>Q</i> на стороны <i>ABC</i>, подобны (соответствуют друг другу вершины, лежащие на одних и тех же сторонах исходного треугольника). Докажите, что прямая <i>PQ</i> проходит через центр описанной окружности треугольника <i>ABC</i>.
К двум окружностям <i>w</i><sub>1</sub> и <i>w</i><sub>2</sub>, пересекающимся в точках <i>A</i> и <i>B</i>, проведена их общая касательная <i>CD</i> (<i>C</i> и <i>D</i> – точки касания соответственно, точка <i>B</i> ближе к прямой <i>CD</i>, чем <i>A</i>). Прямая, проходящая через <i>A</i>, вторично пересекает <i>w</i><sub>1</sub> и <i>w</i><sub>2</sub> в точках и <i>L</i> соответственно (<i>A</i> лежит между <i>K</i> и <i>L</i> ). Прямые <i>KC</i> и <i>LD</i> пересекаются в точке <i>P</i>. Докажите, ч...
Докажите, что у любого выпуклого многогранника найдутся три ребра, из которых можно составить треугольник.
B треугольнике <i>ABC</i> точка <i>O</i> – центр описанной окружности. Прямая <i>a</i> проходит через середину высоты треугольника, опущенной из вершины <i>A</i>, и параллельна <i>OA</i>. Aналогично определяются прямые <i>b</i> и <i>c</i>. Докажите, что эти три прямые пересекаются в одной точке.
Квадрат <i>ABCD</i> разрезан на одинаковые прямоугольники с целыми длинами сторон. Фигура <i>F</i> является объединением всех прямоугольников, имеющих общие точки с диагональю <i>AC</i>. Докажите, что <i>AC</i> делит площадь фигуры <i>F</i> пополам.
Дан правильный 17-угольник <i>A</i><sub>1</sub>... <i>A</i><sub>17</sub>. Докажите, что треугольники, образованные прямыми <i>A</i><sub>1</sub><i>A</i><sub>4</sub>, <i>A</i><sub>2</sub><i>A</i><sub>10</sub>, <i>A</i><sub>13</sub><i>A</i><sub>14</sub> и <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>4</sub><i>A</i><sub>6</sub>, <i>A</i><sub>14</sub><i>A</i><sub>15</sub>, равны.
Постройте четырёхугольник, в который можно вписать и около которого можно описать окружность, по радиусам этих окружностей и углу между диагоналями.
Дан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.
Дан треугольник <i>ABC</i> и точки <i>X, Y</i>, не лежащие на его описанной окружности Ω. Пусть <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – проекции <i>X</i> на <i>BC, CA, AB</i>, а <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub>, <i>C</i><sub>2</sub> – проекции <i>Y</i>. Докажите, что перпендикуляры, опущенные из <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> на, соответственно, <i>B</i><sub>2</sub><i>C</i><sub>2</sub>, <i>C</...
Через вершины треугольника <i>ABC</i> проводятся три произвольные параллельные прямые <i>d<sub>a</sub>, d<sub>b</sub>, d<sub>c</sub></i>. Прямые, симметричные <i>d<sub>a</sub>, d<sub>b</sub>, d<sub>c</sub></i> относительно <i>BC, CA, AB</i> соответственно, образуют треугольник <i>XYZ</i>. Найдите геометрическое место центров вписанных окружностей таких треугольников.
Функция <i>f</i> каждому вектору <i><b>v</b></i> (с общим началом в точке <i>O</i>) пространства ставит в соответствие число <i>f</i>(<i><b>v</b></i>), причём для любых векторов <i><b>u</b>, <b>v</b></i> и любых чисел α, β значение <i>f</i>(α<i><b>u</b></i> + β<i><b>v</b></i>) не превосходит хотя бы одного из чисел <i>f</i>(<i><b>u</b></i>) или <i>f</i>(<i><b>v</b></i>). Какое наибольшее количество значений может принимать такая функция?