Олимпиадные задачи по математике

Касательные, проведённые к описанной окружности остроугольного треугольника <i>ABC</i> в точках <i>A</i> и <i>C</i>, пересекаются в точке <i>Z. AA</i><sub>1</sub>, <i>CC</i><sub>1</sub> – высоты. Прямая <i>A</i><sub>1</sub><i>C</i><sub>1</sub> пересекает прямые <i>ZA, ZC</i> в точках <i>X</i> и <i>Y</i> соответственно. Докажите, что описанные окружности треугольников <i>ABC</i> и <i>XYZ</i> касаются.

Биссектрисы $AA_1, BB_1, CC_1$ треугольника $ABC$ пересекаются в точке $I$. Серединный перпендикуляр к отрезку $BB_1$ пересекает прямые $AA_1$, $CC_1$ в точках $A_0$, $C_0$. Докажите, что описанные окружности треугольников $A_0IC_0$ и $ABC$ касаются.

Окружность, вписанная в прямоугольный треугольник <i>ABC</i>, касается катетов <i>AC</i> и <i>BC</i> в точках <i>B</i><sub>1</sub> и <i>A</i><sub>1</sub>, а гипотенузы – в точке <i>C</i><sub>1</sub>. Прямые <i>C</i><sub>1</sub><i>A</i><sub>1</sub> и <i>C</i><sub>1</sub><i>B</i><sub>1</sub> пересекают <i>CA</i> и <i>CB</i> соответственно в точках <i>B</i><sub>0</sub> и <i>A</i><sub>0</sub>. Докажите, что  <i>AB</i><sub>0</sub> = <i>BA</i><sub>0</sub>.

Через вершину <i>B</i> правильного треугольника <i>ABC</i> проведена прямая <i>l</i>. Окружность ω<sub><i>a</i></sub> с центром <i>I<sub>a</sub></i> касается стороны <i>BC</i> в точке <i>A</i><sub>1</sub> и прямых <i>l</i> и <i>AC</i>. Окружность ω<sub><i>c</i></sub> с центром <i>I<sub>c</sub></i> касается стороны <i>BA</i> в точке <i>C</i><sub>1</sub> и прямых <i>l</i> и <i>AC</i>. Докажите, что ортоцентр треугольника <i>A</i><sub>1</sub><i>BC</i><sub>1</sub> лежит на прямой <i>I<sub&g...

Дан треугольник <i>ABC</i>. На его сторонах <i>AB</i> и <i>BC</i> зафиксированы точки <i>C</i><sub>1</sub> и <i>A</i><sub>1</sub> соответственно. Найдите на описанной окружности треугольника <i>ABC</i> такую точку <i>P</i>, что расстояние между центрами описанных окружностей треугольников <i>APC</i><sub>1</sub> и <i>CPA</i><sub>1</sub> минимально.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка