Олимпиадные задачи по теме «Аффинная геометрия» для 3-9 класса
Аффинная геометрия
НазадНа стороне <i>BC</i> и на продолжении стороны <i>AB</i> за вершину <i>B</i> треугольника <i>ABC</i> расположены точки <i>M</i> и <i>K</i> соответственно, причём <i>BM</i> : <i>MC</i> = 4 : 5 и <i>BK</i> : <i>AB</i> = 1 : 5. Прямая <i>KM</i> пересекает сторону <i>AC</i> в точке <i>N</i>. Найдите отношение <i>CN</i> : <i>AN</i>.
Верно ли, что при любом <i>n</i> правильный 2<i>n</i>-угольник является проекцией некоторого многогранника, имеющего не более, чем <i>n</i> + 2 грани?
Дан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.
В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из <i>k</i> цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
а) <i>k</i> = 7; б) <i>k</i> = 10.
В треугольнике $ABC$ вписанная окружность $\omega$ с центром $I$ касается $BC$ в точке $D$. Точка $P$ – проекция ортоцентра треугольника $ABC$ на медиану из вершины $A$. Докажите, что окружности $AIP$ и $\omega$ высекают на $AD$ равные отрезки
Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $K$ – точка пересечения $BC$ с внешней биссектрисой угла $A$. Прямая $KI$ пересекает внешние биссектрисы углов $B$ и $C$ в точках $X$ и $Y$. Докажите, что $\angle BAX=\angle CAY$.
В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.
Докажите, что две изотомические прямые треугольника не могут пересекаться внутри его серединного треугольника. (<i> Изотомическими прямыми треугольника $ABC$ называются две прямые, точки пересечения которых с прямыми $BC$, $CA$, $AB$ симметричны относительно середин соответствующих сторон треугольника</i>.)
Найдите барицентрические координаты точки Штейнера.
Найдите уравнения эллипсов Штейнера в барицентрических координатах.
На сторонах<i>AB</i>,<i>BC</i>и <i>AC</i>треугольника<i>ABC</i>даны точки <i>M</i>,<i>N</i>и <i>P</i>соответственно. Докажите: а) если точки <i>M</i><sub>1</sub>,<i>N</i><sub>1</sub>и <i>P</i><sub>1</sub>симметричны точкам <i>M</i>,<i>N</i>и <i>P</i>относительно середин соответствующих сторон, то<i>S</i><sub>MNP</sub>=<i>S</i><sub>M<sub>1</sub>N<sub>1</sub>P<sub>1</sub></sub>. б) если <i>M</i><sub>1</sub>,<i>N</i><sub>1</sub>и <i>P</i><sub>1</sub> ...
В параллелограмме<i>ABCD</i>точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>,<i>C</i><sub>1</sub>,<i>D</i><sub>1</sub>лежат соответственно на сторонах<i>AB</i>,<i>BC</i>,<i>CD</i>,<i>DA</i>. На сторонах<i>A</i><sub>1</sub><i>B</i><sub>1</sub>,<i>B</i><sub>1</sub><i>C</i><sub>1</sub>,<i>C</i><sub>1</sub><i>D</i><sub>1</sub>,<i>D</i><sub>1</sub><i>A</i><sub>1</sub>четырехугольника<i>A</i><sub>1</sub><i>B</i><sub&...
В трапеции<i>ABCD</i>с основаниями<i>AD</i>и <i>BC</i>через точку <i>B</i>проведена прямая, параллельная стороне<i>CD</i>и пересекающая диагональ<i>AC</i>в точке <i>P</i>, а через точку <i>C</i> — прямая, параллельная стороне<i>AB</i>и пересекающая диагональ<i>BD</i>в точке <i>Q</i>. Докажите, что прямая<i>PQ</i>параллельна основаниям трапеции.
Дан треугольник<i>ABC</i>. Пусть <i>O</i> — точка пересечения его медиан, а <i>M</i>,<i>N</i>и <i>P</i> — точки сторон<i>AB</i>,<i>BC</i>и <i>CA</i>, делящие эти стороны в одинаковых отношениях (т. е.<i>AM</i>:<i>MB</i>=<i>BN</i>:<i>NC</i>=<i>CP</i>:<i>PA</i>=<i>p</i>:<i>q</i>). Докажите, что: а)<i>O</i> — точка пересечения медиан треугольника<i>MNP</i>; б)<i>O</i> — точка пересечения медиан треугольника, образованного прямыми<i>AN</i>,<i>BP</i>и <i>CM</i>.
На сторонах<i>AB</i>,<i>BC</i>и <i>CD</i>параллелограмма<i>ABCD</i>взяты точки <i>K</i>,<i>L</i>и <i>M</i>соответственно, делящие эти стороны в одинаковых отношениях. Пусть <i>b</i>,<i>c</i>,<i>d</i> — прямые, проходящие через <i>B</i>,<i>C</i>,<i>D</i>параллельно прямым<i>KL</i>,<i>KM</i>,<i>ML</i>соответственно. Докажите, что прямые <i>b</i>,<i>c</i>,<i>d</i>проходят через одну точку.
Через каждую вершину треугольника проведены две прямые, делящие противоположную сторону треугольника на три равные части. Докажите, что диагонали, соединяющие противоположные вершины шестиугольника, образованного этими прямыми, пересекаются в одной точке.
Пусть<i>L</i>— взаимно однозначное отображение плоскости в себя, переводящее любую окружность в некоторую окружность. Докажите, что<i>L</i> — аффинное преобразование.
Пусть<i>L</i>— взаимно однозначное отображение плоскости в себя. Предположим, что оно обладает следующим свойством: если три точки лежат на одной прямой, то их образы тоже лежат на одной прямой. Докажите, что тогда<i>L</i> — аффинное преобразование.
На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Докажите, что найдется точка, расстояние от которой до точки пересечения прямых увеличится.
На плоскости даны три вектора<b>a</b>,<b>b</b>,<b>c</b>, причем$\alpha$<b>a</b>+$\beta$<b>b</b>+$\gamma$<b>c</b>= 0. Докажите, что эти векторы аффинным преобразованием можно перевести в векторы равной длины тогда и только тогда, когда из отрезков с длинами |$\alpha$|, |$\beta$|, |$\gamma$| можно составить треугольник.
Докажите, что любой выпуклый шестиугольник<i>ABCDEF</i>, в котором каждая сторона параллельна противоположной стороне, аффинным преобразованием можно перевести в шестиугольник с равными диагоналями<i>AD</i>,<i>BE</i>и<i>CF</i>.
Докажите, что любой выпуклый четырехугольник, кроме трапеции, аффинным преобразованием можно перевести в четырехугольник, у которого противоположные углы прямые.
Докажите, что если <i>M'</i>и <i>N'</i> — образы многоугольников <i>M</i>и <i>N</i>при аффинном преобразовании, то отношение площадей <i>M</i>и <i>N</i>равно отношению площадей <i>M'</i>и <i>N'</i>.
Докажите, что если аффинное преобразование переводит некоторую окружность в себя, то оно является либо поворотом, либо симметрией.
Докажите, что любое аффинное преобразование можно представить в виде композиции растяжения (сжатия) и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.