Олимпиадные задачи по теме «Многочлены» для 3-9 класса - сложность 4 с решениями
Многочлены
НазадСуществуют ли такие ненулевые числа <i>a, b, c</i>, что при любом <i>n</i> > 3 можно найти многочлен вида <i>P<sub>n</sub></i>(<i>x</i>) = <i>x<sup>n</sup> + ... + ax</i>² + <i>bx + c</i>, имеющий ровно <i>n</i> (не обязательно различных) целых корней?
Пусть <i>p</i> – простое число. Докажите, что при некотором простом <i>q</i> все числа вида <i>n<sup>p</sup> – p</i> не делятся на <i>q</i>.
Докажите, что если натуральное число <i>N</i> представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
На оси <i>Ox</i> произвольно расположены различные точки <i>X</i><sub>1</sub>, ..., <i>X<sub>n</sub></i>, <i>n</i> ≥ 3. Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось <i>Ox</i> в данных точках (и не пересекающие ееё в других точках). Пусть <i>y = f</i><sub>1</sub>(<i>x</i>), ..., <i>y = f<sub>m</sub></i>(<i>x</i>) – соответствующие параболы. Докажите, что парабола <i>y = f</i><sub>1</sub>(<i>x</i>) + ... + <i>f<sub>m</sub></i>(<i>x</i>) пересекает ось <i>Ox</i> в двух точках.
Сколькими способами числа 2<sup>0</sup>, 2<sup>1</sup>, 2², ..., 2<sup>2005</sup> можно разбить на два непустых множества <i>A</i> и <i>B</i> так, чтобы уравнение <i>x</i>² – <i>S</i>(<i>A</i>)<i>x + S</i>(<i>B</i>) = 0, где <i>S</i>(<i>M</i>) – сумма чисел множества <i>M</i>, имело целый корень?
Натуральные числа <i>x</i> и <i>y</i> таковы, что 2<i>x</i>² – 1 = <i>y</i><sup>15</sup>. Докажите, что если <i>x</i> > 1, то <i>x</i> делится на 5.
Даны многочлены <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>). Известно, что для некоторого многочлена <i>R</i>(<i>x, y</i>) выполняется равенство <i>P</i>(<i>x</i>) – <i>P</i>(<i>y</i>) = <i>R</i>(<i>x, y</i>)(<i>Q</i>(<i>x</i>) – <i>Q</i>(<i>y</i>)).
Докажите, что существует такой многочлен <i>S</i>(<i>x</i>), что <i>P</i>(<i>x</i>) = <i>S</i>(<i>Q</i>(<i>x</i>)).
Два многочлена <i>P</i>(<i>x</i>) = <i>x</i><sup>4</sup> + <i>ax</i>³ + <i>bx</i>² + <i>cx + d</i> и <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>px + q</i> принимают отрицательные значения на некотором интервале <i>I</i> длины более 2, а вне <i>I</i> – неотрицательны. Докажите, что найдётся такая точка <i>x</i><sub>0</sub>, что <i>P</i>(<i>x</i><sub>0</sub>) < <i>Q</i>(<i>x</i><sub>0</sub>).
Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида <i>x</i>² + <i>px + q</i>, среди коэффициентов <i>p</i> и <i>q</i> которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?
Существует ли такое конечное множество <i>M</i> ненулевых действительных чисел, что для любого натурального <i>n</i> найдется многочлен степени не меньше <i>n</i> с коэффициентами из множества <i>M</i>, все корни которого действительны и также принадлежат <i>M</i>?
Известно, что <i>f</i>(<i>x</i>), <i>g</i>(<i>x</i>) и <i>h</i>(<i>x</i>) – квадратные трёхчлены. Может ли уравнение <i>f</i>(<i>g</i>(<i>h</i>(<i>x</i>))) = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?
Даны непостоянные многочлены <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>), у которых старшие коэффициенты равны 1.
Докажите, что сумма квадратов коэффициентов многочлена <i>P</i>(<i>x</i>)<i>Q</i>(<i>x</i>) не меньше суммы квадратов свободных членов <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>).
Докажите, что для любого натурального числа <i>a</i><sub>1</sub> > 1 существует такая возрастающая последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ...,
что <img align="absmiddle" src="/storage/problem-media/109599/problem_109599_img_2.gif"> делится на <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>k</sub></i> при всех <i>k</i> ≥ 1.
Положительные числа <i>х</i><sub>1</sub>, ..., <i>х<sub>k</sub></i> удовлетворяют неравенствам <img align="absmiddle" src="/storage/problem-media/109199/problem_109199_img_2.gif">
а) Докажите, что <i>k</i> > 50.
б) Построить пример таких чисел для какого-нибудь <i>k</i>.
в) Найти минимальное <i>k</i>, для которого пример возможен.
Доказать, что существует бесконечно много таких составных <i>n</i>, что 3<sup><i>n</i>–1</sup> – 2<sup><i>n</i>–1</sup> кратно <i>n</i>.
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?
Из имеющихся последовательностей {<i>b<sub>n</sub></i>} и {<i>c<sub>n</sub></i>} (возможно, {<i>b<sub>n</sub></i>} совпадает с {<i>c<sub>n</sub></i>}) разрешается получать последовательности {<i>b<sub>n</sub> + c<sub>n</sub></i>},
{<i>b<sub>n</sub> – c<sub>n</sub></i>}, {<i>b<sub>n</sub>c<sub>n</sub></i>} и {<sup><i>b<sub>n</sub></i></sup>/<sub><i>c<sub>n</sub></i></sub>} (если все члены последовательности {<i>c<sub>n</sub></i>} отличны от 0). Кроме того, из любой имеющейся последователь...
Дана функция <img align="absmiddle" src="/storage/problem-media/98421/problem_98421_img_2.gif"> , где трёхчлены <i>x</i>² + <i>ax + b</i> и <i>x</i>² + <i>cx + d</i> не имеют общих корней. Докажите, что следующие два утверждения равносильны:
1) найдётся числовой интервал, свободный от значений функции;
2) <i>f</i>(<i>x</i>) представима в виде: <i>f</i>(<i>x</i>) = <i>f</i><sub>1</sub>(<i>f</i><sub>2</sub>(...<i>f</i><sub><i>n</i>–1</sub>(<i>f<sub>n</sub></i>(<i>x</i>))...)), где каждая из функций <i>f<sub>i</sub>...
Пусть 1 + <i>x + x</i>² + ... + <i>x</i><sup><i>n</i>–1</sup> = <i>F</i>(<i>x</i>)<i>G</i>(<i>x</i>), где <i>F</i> и <i>G</i> – многочлены, коэффициенты которых – нули и единицы (<i>n</i> > 1).
Докажите, что один из многочленов <i>F</i>, <i>G</i> представим в виде (1 + <i>x + x</i>² + ... + <i>x</i><sup><i>k</i>–1</sup>)<i>T</i>(<i>x</i>), где <i>T</i>(<i>x</i>) – также многочлен с коэффициентами 0 и 1 (<i>k</i> > 1).
Докажите, что не существует никакой (даже разрывной) функции <i>y = f</i>(<i>x</i>), для которой <i>f</i>(<i>f</i>(<i>x</i>)) = <i>x</i>² – 1996 при всех <i>x</i>.
Многочлен <i>P</i>(<i>x</i>) со старшим коэффициентом, равным 1, обладает тем свойством, что среди значений, принимаемых им при натуральных значениях аргумента, встречаются все числа вида 2<sup><i>m</i></sup> с натуральным <i>m</i>. Докажите, что этот многочлен – первой степени.
Трёхчлен <i>ax</i>² + <i>bx + c</i> при всех целых <i>x</i> является точным квадратом. Доказать, что тогда <i>ax</i>² + <i>bx + c</i> = (<i>dx + e</i>)².
Найти такие отличные от нуля неравные между собой целые числа <i>a</i>, <i>b</i>, <i>c</i>, чтобы выражение <i>x</i>(<i>x</i> – <i>a</i>)(<i>x</i> – <i>b</i>)(<i>x</i> – <i>c</i>) + 1 разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами.
Обозначим через <i>T<sub>k</sub></i>(<i>n</i>) сумму произведений по <i>k</i> чисел от 1 до <i>n</i>. Например, <i>T</i><sub>2</sub>(4) = 1·2 + 1·3 + 1·4 + 2·3 + 2·4 + 3·4.
а) Найдите формулы для <i>T</i><sub>2</sub>(<i>n</i>) и <i>T</i><sub>3</sub>(<i>n</i>).
б) Докажите, что <i>T<sub><i>k</i></sub></i>(<i>n</i>) является многочленом от <i>n</i> степени 2<i>k</i>.
в) Укажите метод нахождения многочленов <i>T</i><sub><i>k</i></sub>(<i>n</i>) при <i>k</i> = 2, 3, 4, ... и примените его для о...
а) <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, <i>x</i><sub>4</sub>, <i>x</i><sub>5</sub> – положительные числа. Докажите, что квадрат суммы этих чисел не меньше учетверённой суммы произведений <i>x</i><sub>1</sub><i>x</i><sub>2</sub>, <i>x</i><sub>2</sub><i>x</i><sub>3</sub>, <i>x</i><sub>3</sub><i>x</i><sub>4</sub>, <i>x</i><sub>4</sub><i>x</i><sub>5</sub> и <i>x</i><sub>5</sub><i>x</i><sub>1</sub>.
б) Пр...