Олимпиадные задачи по теме «Алгебраические неравенства и системы неравенств» для 11 класса - сложность 3 с решениями

Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства   <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif">   Докажите, что  <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.

Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.

Докажите, что сумма длин этих отрезков не меньше, чем   <img align="absmiddle" src="/storage/problem-media/116727/problem_116727_img_2.gif"> .

Для  <i>n</i> = 1, 2, 3  будем называть числом <i>n</i>-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию

1,  (<i>n</i> + 2),  (<i>n</i> + 2)²,  ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.

Даны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство  (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).

Сравните числа   <img align="absmiddle" src="/storage/problem-media/116374/problem_116374_img_2.gif">

Квадратная доска разделена на <i>n</i>² прямоугольных клеток  <i>n</i> – 1  горизонтальными и  <i>n</i> – 1  вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все <i>n</i> клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.

Докажите, что если  <i>x</i> > 0,  <i>y</i> > 0,  <i>z</i> > 0 и  <i>x</i>² + <i>y</i>² + <i>z</i>² = 1,  то  <img align="absmiddle" src="/storage/problem-media/115995/problem_115995_img_2.gif">,  и укажите, в каком случае достигается равенство.

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.   а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру <i>А</i> передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Дан четырёхугольник <i>ABCD</i>. Оказалось, что описанная окружность треугольника <i>ABC</i>, касается стороны <i>CD</i>, а описанная окружность треугольника <i>ACD</i> касается стороны <i>AB</i>. Докажите, что диагональ <i>AC</i> меньше, чем расстояние между серединами сторон <i>AB</i> и <i>CD</i>.

Докажите, что если числа <i>x, y, z</i> при некоторых значениях <i>p</i> и <i>q</i> являются решениями системы

     <i>y = x<sup>n</sup> + px + q,  z = y<sup>n</sup> + py + q,  x = z<sup>n</sup> + pz + q</i>,

то выполнено неравенство  <i>x</i>²<i>y + y</i>²<i>z + z</i>²<i>x ≥ x</i>²<i>z + y</i>²<i>x + z</i>²<i>y</i>.

Рассмотрите случаи   а)  <i>n</i> = 2;   б)  <i>n</i> = 2010.

В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть <i>S</i> – минимальное из этих расстояний. Какое наибольшее значение может принимать <i>S</i>?

Числа <i>a, b, c</i> таковы, что уравнение  <i>x</i>³ + <i>ax</i>² + <i>bx + c</i> = 0  имеет три действительных корня. Докажите, что если  –2 ≤ <i>a + b + c</i> ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].

Дан многочлен  <i>P</i>(<i>x</i>) = <i>a</i><sub>0</sub><i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i>.  Положим  <i>m</i> = min {<i>a</i><sub>0</sub>, <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub>, ..., <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i>}.

Докажите, что  <i>P</i>(<i>x</i>) ≥ <i>mx<sup>n</sup></i>...

Числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> таковы, что  <i>x</i><sub>1</sub> ≥ <i>x</i><sub>2</sub> ≥ ... ≥ <i>x<sub>n</sub></i> ≥ 0  и   <img align="absmiddle" src="/storage/problem-media/111800/problem_111800_img_2.gif">   Докажите, что   <img align="absmiddle" src="/storage/problem-media/111800/problem_111800_img_3.gif">

Даны положительные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>.  Известно, что  <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>n</sub></i> ≤ ½.  Докажите, что  (1 + <i>a</i><sub>1</sub>)(1 + <i>a</i><sub>2</sub>)...(1 + <i>a<sub>n</sub></i>) < 2.

Пусть  $x_1 \le \dots \le x_n$.  Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.

Найдите все такие натуральные  (<i>a, b</i>),  что <i>a</i><sup>2</sup> делится на натуральное число  2<i>ab</i><sup>2</sup> – <i>b</i><sup>3</sup> + 1.

Докажите, что   <img align="absmiddle" src="/storage/problem-media/110180/problem_110180_img_2.gif">   для  <i>x</i> > 0  и натурального <i>n</i>.

Функции  <i>f</i>(<i>x</i>) – <i>x</i>  и  <i>f</i>(<i>x</i>²) – <i>x</i><sup>6</sup>  определены при всех положительных <i>x</i> и возрастают.

Докажите, что функция   <img align="absmiddle" src="/storage/problem-media/110122/problem_110122_img_2.gif">   также возрастает при всех положительных <i>x</i>.

Рассматриваются такие квадратичные функции  <i>f</i>(<i>x</i>) = <i>ax</i>² + <i>bx + c</i>,  что  <i>a < b</i>  и  <i>f</i>(<i>x</i>) ≥ 0  для всех <i>x</i>.

Какое наименьшее значение может принимать выражение  <sup><i>a+b+c</i></sup>/<sub><i>b–a</i></sub> ?

Дан квадратный трёхчлен  <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>.  Уравнение  <i>f</i>(<i>f</i>(<i>x</i>)) = 0  имеет четыре различных действительных корня, сумма двух из которых равна  –1. Докажите, что  <i>b</i> ≤ – ¼.

<i>a</i> и <i>b</i> – такие различные натуральные числа, что  <i>ab</i>(<i>a + b</i>)  делится на  <i>a</i>² + <i>ab + b</i>².  Докажите, что  |<i>a – b</i>| > <img src="/storage/problem-media/109735/problem_109735_img_2.gif"> .

Пусть  –1 < <i>x</i><sub>1</sub> < <i>x</i><sub>2</sub> < ... < <i>x<sub>n</sub></i> < 1  и   <img align="absmiddle" src="/storage/problem-media/109716/problem_109716_img_2.gif">

Докажите, что если  <i>y</i><sub>1</sub> < <i>y</i><sub>2</sub> < ... < <i>y<sub>n</sub></i>,  то   <img align="absmiddle" src="/storage/problem-media/109716/problem_109716_img_3.gif">

Во всех рациональных точках действительной прямой расставлены целые числа.

Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка