Олимпиадные задачи по математике для 10 класса - сложность 3 с решениями
Числа <i>a, b</i> и <i>c</i> таковы, что (<i>a + b</i>)(<i>b + c</i>)(<i>c + a</i>) = <i>abc</i>, (<i>a</i>³ + <i>b</i>³)(<i>b</i>³ + <i>c</i>³)(<i>c</i>³ + <i>a</i><sup>3</sup>) = <i>a</i>³<i>b</i>³<i>c</i>³. Докажите, что <i>abc</i> = 0.
Набор пятизначных чисел<i> {N<sub>1</sub> </i>,<i> N<sub>k</sub>} </i>таков, что любое пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в одном разряде хотя бы с одним их чисел<i> N<sub>1</sub> </i>,<i> N<sub>k</sub> </i>. Найдите наименьшее возможное значение<i> k </i>.
По шоссе мимо наблюдателя проехали "Москвич", "Запорожец" и двигавшаяся им навстречу "Нива". Известно, что когда с наблюдателем поравнялся "Москвич", то он был равноудалён от "Запорожца" и "Нивы", а когда с наблюдателем поравнялась "Нива", то она была равноудалена от "Москвича" и "Запорожца". Докажите, что "Запорожец" в момент проезда мимо наблюдателя был равноудалён от "Нивы" и "Москвича". (Скорости автомашин считаем постоянными. В рассматриваемые моменты равноудалённые машины находились по разные стороны от наблюдателя.)
Путь от платформы <i>A</i> до платформы <i>B</i> электропоезд прошел за <i>X</i> минут (0 < <i>X</i> < 60). Найдите <i>X</i>, если известно, что как в момент отправления от <i>A</i>, так и в момент прибытия в <i>B</i> угол между часовой и минутной стрелками равнялся <i>X</i> градусам.
Докажите, что если1<i><a<b<c </i>, то <center><i>
log <sub>a</sub></i>(<i>log <sub>a</sub> b</i>)<i>+log <sub>b</sub> </i>(<i>log <sub>b</sub> c</i>)<i>+log <sub>c</sub></i>(<i>log <sub>c</sub>a</i>)<i>></i>0<i>. </i></center>
Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?
Найдите наименьшее натуральное число, представимое в виде суммы 2002 натуральных слагаемых с одинаковой суммой цифр и в виде суммы 2003 натуральных слагаемых с одинаковой суммой цифр.
Можно ли в клетки таблицы 9×9 записать натуральные числа от 1 до 81 так, чтобы сумма чисел в каждом квадрате 3×3 была одна и та же?
Дан правильный 2<i>n</i>-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.
В турнире по теннису <i>n</i> участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких <i>n</i> возможен такой турнир?
Найдите все функции<i> f</i>(<i>x</i>), определенные при всех положительных<i> x </i>, принимающие положительные значения и удовлетворяющие при любых положительных<i> x </i>и<i> y </i>равенству<i> f</i>(<i>x<sup>y</sup></i>)<i>=f</i>(<i>x</i>)<i><sup>f</sup></i>(<i>y</i>).
В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции?
Найдите максимальное число <i>N</i>, для которого существуют такие <i>N</i> последовательных натуральных чисел, что сумма цифр первого числа делится на 1, сумма цифр второго числа – на 2, сумма цифр третьего числа – на 3, ..., сумма цифр <i>N</i>-го числа – на <i>N</i>.
В однокруговом шахматном турнире назовём партию <i>неправильной</i>, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший.
Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.
Карточка матлото представляет собой таблицу 10×10 клеточек. Играющий отмечает 10 клеточек и отправляет карточку в конверте. После этого в газете публикуется десятка проигрышных клеточек. Докажите, что
а) можно заполнить 13 карточек так, чтобы среди них обязательно нашлась "выигрышная" карточка – такая, в которой не отмечена ни одна проигрышная клеточка;
б) двенадцати карточек для этого недостаточно.
Карточка матлото представляет собой таблицу 6×6 клеточек. Играющий отмечает 6 клеточек и отправляет карточку в конверте. После этого в газете публикуется шестёрка проигрышных клеточек. Докажите, что
а) можно заполнить девять карточек так, чтобы среди них обязательно нашлась "выигрышная" карточка – такая, в которой не отмечена ни одна проигрышная клеточка;
б) восьми карточек для этого недостаточно.
Существует ли такое шестизначное число <i>A</i>, что среди чисел <i>A</i>, 2<i>A</i>, ..., 500000<i>A</i> нет ни одного числа, оканчивающегося шестью одинаковыми цифрами?
Докажите, что среди 50 человек найдутся двое, у которых чётное число общих знакомых (быть может, 0) среди остальных 48 человек.
Петя заметил, что у всех его 25 одноклассников различное число друзей в этом классе. Сколько друзей у Пети?
Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
а) Докажите, что число её членов меньше 100.
б) Приведите пример такой прогрессии с 72 членами.
в) Докажите, что число членов всякой такой прогрессии не больше 72.
Каждая грань выпуклого многогранника – многоугольник с чётным числом сторон.
Обязательно ли его рёбра можно раскрасить в два цвета так, чтобы у каждой грани было поровну рёбер разных цветов?
Докажите, что в правильном двенадцатиугольнике <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>12</sub> диагонали <i>A</i><sub>1</sub><i>A</i><sub>5</sub>, <i>A</i><sub>2</sub><i>A</i><sub>6</sub>, <i>A</i><sub>3</sub><i>A</i><sub>8</sub> и <i>A</i><sub>4</sub><i>A</i><sub>11</sub> пересекаются в одной точке.
Натуральное число $N$ кратно 2020. В его десятичной записи все цифры различны, причём если любые две из них поменять местами, получится число, не кратное 2020. При каком количестве цифр в десятичной записи числа $N$ такое возможно?
Юра и Яша имеют по экземпляру одной и той же клетчатой таблицы 5×5, заполненной 25 различными числами. Юра выбирает наибольшее число в таблице и вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее из оставшихся чисел и вычёркивает строку и столбец, содержащие это число, и т.д. Яша производит аналогичные действия, но выбирает наименьшие числа. Может ли случиться, что сумма чисел, выбранных Яшей a) больше суммы чисел, выбранных Юрой? б) больше суммы любых других пяти чисел исходной таблицы, удовлетворяющих условию: никакие два из них не стоят в одной строке или в одном столбце?
Докажите, что можно найти бесконечно много таких пар целых чисел, что в десятичной записи каждого числа все цифры не меньше 7 и произведение чисел каждой пары – тоже число, где все цифры не меньше 7.