Олимпиадные задачи по математике для 2-9 класса
Имеется 200 гирек массами 1, 2, ..., 200 грамм. Их разложили на две чаши весов по 100 гирек на каждую, и весы оказались в равновесии. На каждой гирьке записали, сколько гирек на противоположной чаше легче неё. Докажите, что сумма чисел, записанных на гирьках левой чаши, равна сумме чисел, записанных на гирьках правой чаши.
На стороне <i>AB</i> треугольника <i>ABC</i> взята такая точка <i>P</i>, что <i>AP</i> = 2<i>PB</i>, а на стороне <i>AC</i> – ее середина, точка <i>Q</i>. Известно, что <i>CP</i> = 2<i>PQ</i>.
Докажите, что треугольник <i>ABC</i> прямоугольный.
На наибольшей стороне <i>AB</i> треугольника <i>ABC</i> взяли такие точки <i>P</i> и <i>Q</i>, что <i>AQ = AC, BP = BC</i>.
Докажите, что центр описанной окружности треугольника <i>PQC</i> совпадает с центром вписанной окружности треугольника <i>ABC</i>.
Грани выпуклого многогранника – подобные треугольники.
Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).
На сторонах <i>BC</i> и <i>CD</i> ромба <i>ABCD</i> взяли точки <i>P</i> и <i>Q</i> соответственно так, что <i>BP = CQ</i>.
Докажите, что точка пересечения медиан треугольника <i>APQ</i> лежит на диагонали <i>BD</i> ромба.
Найдите все такие натуральные числа <i>a</i> и <i>b</i>, что (<i>a + b</i>²)(<i>b + a</i>²) является целой степенью двойки.
Есть 40 гирек массой 1 г, 2 г, ..., 40 г. Из них выбрали 10 гирь чётной массы и положили на левую чашу весов. Затем выбрали 10 гирь нечётной массы и положили на правую чашу весов. Весы оказались в равновесии. Докажите, что на какой-нибудь чаше есть две гири с разностью масс в 20 г.
Концы <i>N</i> хорд разделили окружность на 2<i>N</i> дуг единичной длины. Известно, что каждая из хорд делит окружность на две дуги чётной длины.
Докажите, что число <i>N</i> чётно.
В шахматном турнире участвовало 8 человек, и в итоге они набрали разное количество очков (каждый играл с каждым один раз, победа – 1 очко, ничья – 0,5 очка, поражение – 0). Шахматист, занявший второе место, набрал столько же очков, сколько четверо последних набрали вместе.
Как сыграли между собой шахматисты, занявшие третье и седьмое места?
Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?
<div align="center"><img src="/storage/problem-media/111915/problem_111915_img_2.gif"></div>Угол <i>B</i> при вершине равнобедренного треугольника <i>ABC</i> равен 120°. Из вершины <i>B</i> выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания <i>AC</i> в точках <i>P</i> и <i>Q</i>, попали на боковые стороны в точки <i>M</i> и <i>N</i> (см. рис.). Докажите, что площадь треугольника <i>PBQ</i> равна сумме площадей треугольников <i>AMP</i> и <i>CNQ</i>.
При каких натуральных <i>n</i> > 1 существуют такие натуральные <i>b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i> (не все из которых равны), что при всех натуральных <i>k</i> число
(<i>b</i><sub>1</sub> + <i>k</i>)(<i>b</i><sub>2</sub> + <i>k</i>)...(<i>b<sub>n</sub> + k</i>) является степенью натурального числа? (Показатель степени может зависеть от <i>k</i>, но должен быть больше 1.)
Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.
Рассматриваются 2000 чисел: 11, 101, 1001, ... . Докажите, что среди этих чисел не менее 99% составных.
Точки <i>P</i><sub>1</sub>, <i>P</i><sub>2</sub>, ..., <i>P</i><sub><i>n</i>–1</sub> делят сторону <i>BC</i> равностороннего треугольника <i>ABC</i> на <i>n</i> равных частей: <i>BP</i><sub>1</sub> = <i>P</i><sub>1</sub><i>P</i><sub>2</sub> = ... = <i>P</i><sub><i>n</i>–l</sub><i>C</i>. Точка <i>M</i> выбрана на стороне <i>AC</i> так, что <i>AM = BP</i><sub>1</sub>. <div align="center"><img src="/storage/problem-media/108681/problem_108681_img_2.gif"></div>Докажите,...
Дан равносторонний треугольник <i>ABC</i>. Сторона <i>BC</i> разделена на три равные части точками <i>K</i> и <i>L</i>, а точка <i>M</i> делит сторону <i>AC</i> в отношении 1 : 2, считая от вершины <i>A</i>. Докажите, что сумма углов <i>AKM</i> и <i>ALM</i> равна 30°.
Квадрат <i>ABCD</i> и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника: <i>AEF, BGH, CIJ, DKL</i> (<i>EF, GH, IJ, KL</i> – дуги окружности). Докажите, что
а) сумма длин дуг <i>EF</i> и <i>IJ</i> равна сумме длин дуг <i>GH</i> и <i>KL</i>;
б) сумма периметров криволинейных треугольников <i>AEF</i> и <i>CIJ</i> равна сумме периметров криволинейных треугольников <i>BGH</i> и <i>DKL</i>.
В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по одной вершине четырёхугольника).
Докажите, что периметр четырёхугольника не меньше удвоенной диагонали прямоугольника.
Из точки <i>O</i>, лежащей внутри выпуклого <i>n</i>-угольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, проведены отрезки ко всем вершинам: <i>OA</i><sub>1</sub>, <i>OA</i><sub>2</sub>, ..., <i> OA<sub>n</sub> </i>. Оказалось, что все углы между этими отрезками и прилегающими к ним сторонами <i>n</i>-угольника – острые, причём ∠<i>OA</i><sub>1</sub><i>A<sub>n</sub></i> ≤ ∠<i>OA</i><sub>1</sub><i>A</i><sub>2</sub>, ∠<i>OA</i><sub>2</sub><i>A</i><sub>1&...
Рассматривается шестиугольник, который является пересечением двух (не обязательно равных) правильных треугольников.
Докажите, что если параллельно перенести один из треугольников, то периметр пересечения (если оно остаётся шестиугольником), не меняется.
На сторонах <i>AB</i> и <i>BC</i> равностороннего треугольника <i>ABC</i> взяты точки <i>D</i> и <i>K</i>, а на стороне <i>AC</i> – точки <i>E</i> и <i>M</i>, причём <i>DA + AE = KC + CM = AB</i>.
Докажите, что угол между прямыми <i>DM</i> и <i>KE</i> равен 60°.
Внутри острого угла <i>XOY</i> взяты точки <i>M</i> и <i>N</i>, причём ∠<i>XON</i> = ∠<i>YOM</i>. На луче <i>OX</i> отмечена точка <i>Q</i> так, что ∠<i>NQO</i> = ∠<i>MQX</i>, а на луче <i>OY</i> – точка <i>P</i> так, что ∠<i>NPO</i> = ∠<i>MPY</i>. Докажите, что длины ломаных <i>MPN</i> и <i>MQN</i> равны.
В треугольнике <i>ABC</i> точки <i>A', B', C'</i> лежат на сторонах <i>BC, CA</i> и <i>AB</i> соответственно. Известно, что ∠<i>AC'B'</i> = ∠<i>B'A'C</i>, ∠<i>CB'A'</i> = ∠<i>A'C'B</i>, ∠<i>BA'C'</i> = ∠<i>C'B'A</i>. Докажите, что точки <i> A', B', C'</i> – середины сторон треугольника <i>ABC</i>.
Плоская выпуклая фигура ограничена отрезками<i> AB </i>и<i> AD </i>и дугой<i> BD </i>некоторой окружности (рис.1). Постройте какую-нибудь прямую, которая делит пополам: а) периметр этой фигуры; б) её площадь.
В прямоугольном треугольнике<i> ABC </i>точка<i> O </i>– середина гипотенузы<i> AC </i>. На отрезке<i> AB </i>взята точка<i> M </i>, а на отрезке<i> BC </i>– точка<i> N </i>, причём угол<i> MON </i>– прямой. Докажите, что<i> AM</i>2<i>+CN</i>2<i> = MN</i>2.