Олимпиадная задача по планиметрии: доказательство прямоугольности треугольника
Задача
На стороне AB треугольника ABC взята такая точка P, что AP = 2PB, а на стороне AC – ее середина, точка Q. Известно, что CP = 2PQ.
Докажите, что треугольник ABC прямоугольный.
Решение
Отложим на продолжении стороны AB отрезок BD = PB. Тогда PQ – средняя линия треугольника ACD. Следовательно, CD = 2PQ = CP, то есть треугольник PCD – равнобедренный. CB – его медиана, а значит, и высота.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет