Олимпиадные задачи из источника «Региональный этап» для 8 класса - сложность 1-4 с решениями

В стране 2000 городов. Каждый город связан беспосадочными двусторонними авиалиниями с некоторыми другими городами, причём для каждого города число исходящих из него авиалиний есть степень двойки (то есть 1, 2, 4, 8, ...). Для каждого города <i>A</i> статистик подсчитал количество маршрутов, имеющих не более одной пересадки, связывающих <i>A</i> с другими городами, а затем просуммировал полученные результаты по всем 2000 городам. У него получилось 100000. Докажите, что статистик ошибся.

Путь от платформы <i>A</i> до платформы <i>B</i> электропоезд прошел за <i>X</i> минут  (0 < <i>X</i> < 60).  Найдите <i>X</i>, если известно, что как в момент отправления от <i>A</i>, так и в момент прибытия в <i>B</i> угол между часовой и минутной стрелками равнялся <i>X</i> градусам.

Даны 8 гирек весом1<i>,</i>2<i>,..,</i>8граммов, но неизвестно, какая из них сколько весит. Барон Мюнхгаузен утверждает, что помнит, какая из гирек сколько весит, и в доказательство своей правоты готов провести одно взвешивание, в результате которого будет однозначно установлен вес хотя бы одной из гирь. Не обманывает ли он?

Два пирата делят добычу, состоящую из двух мешков монет и алмаза, действуя по следующим правилам. Вначале первый пират забирает себе из любого мешка несколько монет и перекладывает из этого мешка в другой такое же количество монет. Затем также поступает второй пират (выбирая мешок, из которого он берет монеты, по своему усмотрению) и т.д. до тех пор, пока можно брать монеты по этим правилам. Пирату, взявшему монеты последним, достается алмаз. Кому достанется алмаз, если каждый из пиратов старается получить его? Дайте ответ в зависимости от первоначального количества монет в мешках.

Какое наименьшее число сторон может иметь нечётноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?

В некотором городе на каждом перекрёстке сходятся ровно три улицы. Улицы раскрашены в три цвета так, что на каждом перекрёстке сходятся улицы трёх разных цветов. Из города выходят три дороги. Докажите, что они имеют разные цвета.

Ненулевые числа <i>a</i> и <i>b</i> удовлетворяют равенству  <i>a</i>²<i>b</i>²(<i>a</i>²<i>b</i>² + 4) = 2(<i>a</i><sup>6</sup> + <i>b</i><sup>6</sup>).  Докажите, что хотя бы одно из них иррационально.

Клетки таблицы 200×200 окрашены в чёрный и белый цвета так, что чёрных клеток на 404 больше, чем белых.

Докажите, что найдётся квадрат 2×2, в котором число белых клеток нечётно.

Среди 2000 внешне неразличимых шариков половина – алюминиевые массой 10 г, а остальные – дюралевые массой 9,9 г. Требуется выделить две кучки шариков так, чтобы массы кучек были различны, а число шариков в них – одинаково. Каким наименьшим числом взвешиваний на чашечных весах без гирь это можно сделать?

В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке. <div align="center"><img src="/storage/problem-media/110043/problem_110043_img_2.gif"></div>Докажите, что сумма всех чисел в таблице делится на 200.

На прямой имеется2<i>n+</i>1отрезок. Любой отрезок пересекается по крайней мере с<i> n </i>другими. Докажите, что существует отрезок, пересекающийся со всеми остальными.

Существуют ли различные взаимно простые в совокупности натуральные числа <i>a, b</i> и <i>c</i>, большие 1 и такие, что  2<i><sup>a</sup></i> + 1  делится на <i>b</i>,  2<i><sup>b</sup></i> + 1  делится на <i>c</i>, а  2<i><sup>c</sup></i> + 1  делится на <i>a</i>?

Миша решил уравнение  <i>x</i>² + <i>ax + b</i> = 0  и сообщил Диме набор из четырёх чисел – два корня и два коэффициента этого уравнения (но не сказал, какие именно из них корни, а какие – коэффициенты). Сможет ли Дима узнать, какое уравнение решал Миша, если все числа набора оказались различными?

При каком наименьшем <i>n</i> квадрат <i>n</i>×<i>n</i> можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету?

Рассматриваются 2000 чисел: 11, 101, 1001, ... . Докажите, что среди этих чисел не менее 99% составных.

В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более <i>N</i> различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на  <i>N</i> + 2  республики так, чтобы никакие два города из одной республики не были соединены дорогой.

Даны числа 1, 2, ..., <i>N</i>, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких <i>N</i> всегда можно сделать все числа белыми?

Для неотрицательных чисел <i>x</i> и <i>y</i>, не превосходящих 1, докажите, что   <img align="absmiddle" src="/storage/problem-media/110027/problem_110027_img_2.gif">

Последовательность<i> a</i>1<i>, a</i>2<i>,..,a</i>2000действительных чисел такова, что для любого натурального<i> n </i>,1<i><img src="/storage/problem-media/110026/problem_110026_img_2.gif"> n<img src="/storage/problem-media/110026/problem_110026_img_2.gif"></i>2000, выполняется равенство <center><i>

a</i>1<i></i>3<i>+a</i>2<i></i>3<i>+..+a<sub>n</sub></i>3<i>=</i>(<i>a</i>1<i>+a</i>2<i>+..+a<sub>n</sub></i>)<i></i>2<i>.

</i></center> Докажите, что все члены этой последовательности – целые числа.

Окружность с центром <i>O</i>, вписанная в треугольник <i>ABC</i>, касается стороны <i>AC</i> в точке <i>K</i>. Вторая окружность, также с центром <i>O</i>, пересекает все стороны треугольника <i>ABC</i>. Пусть <i>E</i> и <i>F</i> – её точки пересечения со сторонами соответственно <i>AB</i> и <i>BC</i>, ближайшие к вершине <i>B; B</i><sub>1</sub> и <i>B</i><sub>2</sub> – точки её пересечения со стороной <i>AC, B</i><sub>1</sub> – ближе к <i>A</i>. Докажите, что точки <i>B, K</i> и точка <i>P</i> пересечения отрезков <i>B</i><sub>2</sub><i...

В выпуклом четырёхугольнике <i>ABCD</i> провели биссектрисы <i>l<sub>a</sub>, l<sub>b</sub>, l<sub>c</sub></i> и <i>l<sub>d</sub></i> внешних углов при вершинах <i>A, B, C</i> и <i>D</i> соответственно. Точки пересечения прямых <i>l<sub>a</sub></i> и <i>l<sub>b</sub>, l<sub>b</sub></i> и <i>l<sub>c</sub>, l<sub>c</sub></i> и <i>l<sub>d</sub>, l<sub>d</sub></i> и <i>l<sub>a</sub></i> обозначили через <i>K, L, M</i> и <i>N</i>. Известно, что три перпендикуляра, опущенных из точки <i>K</i> на <i...

Дан параллелограмм <i>ABCD</i> с углом <i>A</i>, равным 60°. Точка <i>O</i> – центр описанной окружности треугольника <i>ABD</i>. Прямая <i>AO</i> пересекает биссектрису внешнего угла <i>C</i> в точке <i>K</i>. Найдите отношение  <i>AO</i> : <i>OK</i>.

Окружности <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> пересекаются в точках <i>M</i> и <i>N</i>. Через точку <i>A</i> окружности <i>S</i><sub>1</sub> проведены прямые <i>AM</i> и <i>AN</i>, пересекающие окружность <i>S</i><sub>2</sub> в точках <i>B</i> и <i>C</i>, а через точку <i>D</i> окружности <i>S</i><sub>2</sub> – прямые <i>DM</i> и <i>DN</i>, пересекающие <i>S</i><sub>1</sub> в точках <i>E</i> и <i>F</i>, причём точки <i>A, E, F</i> лежат по одну сторону от прямой <i>MN</i>,...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка