Олимпиадные задачи из источника «1997-1998» для 10 класса - сложность 1-4 с решениями
1997-1998
НазадНа выборах в городскую Думу каждый избиратель, если он приходит на выборы, отдает голос за себя (если он является кандидатом) и за тех кандидатов, которые являются его друзьями. Прогноз социологической службы мэрии считается хорошим, если в нем правильно предсказано количество голосов, поданных хотя бы за одного из кандидатов, и нехорошим в противном случае. Докажите, что при любом прогнозе избиратели могут так явиться на выборы, что этот прогноз окажется нехорошим.
Существуют ли такие <i>n</i>-значные числа <i>M</i> и <i>N</i>, что все цифры <i>M</i> – чётные, все цифры <i>N</i> – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи <i>M</i> или <i>N</i> хотя бы один раз и <i>M</i> делится на <i>N</i>?
Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?
Дан биллиард в форме правильного 1998-угольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>1998</sub>. Из середины стороны <i>A</i><sub>1</sub><i>A</i><sub>2</sub> выпустили шар, который, отразившись последовательно от сторон <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>3</sub><i>A</i><sub>4</sub>, ..., <i>A</i><sub>1998</sub><i>A</i><sub>1</sub> (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.
Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий.
Могут ли значения этих трёхчленов в некоторой положительной целой точке равняться 19 и 98?
Имеется квадрат клетчатой бумаги размером 102×102 клетки и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.
Куб со стороной<i> n </i>(<i> n<img src="/storage/problem-media/109948/problem_109948_img_2.gif"></i>3) разбит перегородками на единичные кубики. Какое минимальное число перегородок между единичными кубиками нужно удалить, чтобы из каждого кубика можно было добраться до границы куба?
В пятиугольнике <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub><i>A</i><sub>5</sub> проведены биссектрисы <i>l</i><sub>1</sub>, <i>l</i><sub>2</sub>, ..., <i>l</i><sub>5</sub> углов <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A</i><sub>5</sub> соответственно. Биссектрисы <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub> пересекаются в точке <i>B</i><sub>1</sub>, <i>l</i><sub>2</sub> и <i>l</i...
Решите уравнение {(<i>x</i> + 1)³} = <i>x</i>³.
В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4,2<i></i>1998. Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?
Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)
Пусть<i> f</i>(<i>x</i>)<i>=x<sup>2</sup>+ax+b cos x </i>. Найдите все значения параметров<i> a </i>и<i> b </i>, при которых уравнения<i> f</i>(<i>x</i>)<i>=</i>0и<i> f</i>(<i>f</i>(<i>x</i>))<i>=</i>0имеют совпадающие непустые множества действительных корней.
В последовательности натуральных чисел {<i>a<sub>n</sub></i>}, <i>n</i> = 1, 2, ..., каждое натуральное число встречается хотя бы один раз, и для любых различных <i>n</i> и <i>m</i> выполнено неравенство <img align="absmiddle" src="/storage/problem-media/109941/problem_109941_img_2.gif"> Докажите, что тогда |<i>a<sub>n</sub> – n</i>| < 2000000 для всех натуральных <i>n</i>.
Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть<i> A </i>– количество черных отрезков на периметре,<i> B </i>– количество белых, и пусть многоугольник состоит из<i> a </i>черных и<i> b </i>белых клеток. Докажите, что<i> A-B=</i>4(<i>a-b</i>).
Имеется таблица <i>n×n</i>, в <i>n</i> – 1 клетках которой записаны единицы, а в остальных клетках – нули. С таблицей разрешается проделывать следующую операцию: выбрать клетку, вычесть из числа, стоящего в этой клетке, единицу, а ко всем остальным числам, стоящим в одной строке или в одном столбце с выбранной клеткой, прибавить единицу. Можно ли из этой таблицы с помощью указанных операций получить таблицу, в которой все числа равны?
На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?
Ювелир сделал незамкнутую цепочку из<i> N></i>3пронумерованных звеньев. Капризная заказчица потребовала изменить порядок звеньев в цепочке. Из вредности она заказала такую незамкнутую цепочку, чтобы ювелиру пришлось раскрыть как можно больше звеньев. Сколько звеньев придется раскрыть?
Назовём <i>лабиринтом</i> шахматную доску 8×8, на которой между некоторыми полями поставлены перегородки. По команде <b>ВПРАВО</b> ладья смещается на одно поле вправо или, если справа находится край доски или перегородка, остаётся на месте; аналогично выполняются команды <b>ВЛЕВО, ВВЕРХ</b> и <b>ВНИЗ</b>. Программист пишет программу – конечную последовательность указанных команд, и даёт её пользователю, после чего пользователь выбирает лабиринт и помещает в него ладью на любое поле. Верно ли, что программист может написать такую программу, что ладья обойдёт все доступные поля в лабиринте при любом выборе пользователя?
Угол, образованный лучами <i>y = x</i> и <i>y</i> = 2<i>x</i> при <i>x</i> ≥ 0, высекает на параболе <i>y = x</i>² + <i>px + q</i> две дуги. Эти дуги спроектированы на ось <i>Ox</i>. Докажите, что проекция левой дуги на 1 короче проекции правой.
В каждую клетку квадратной таблицы размера (2<sup><i>n</i></sup> – 1)×(2<sup><i>n</i></sup> – 1) ставится одно из чисел 1 или – 1. Расстановку чисел назовём <i>удачной</i>, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.
На множестве действительных чисел задана операция<i> * </i>, которая каждым двум числам<i> a </i>и<i> b </i>ставит в соответствие число<i> ab </i>. Известно, что равенство(<i>ab</i>)<i>c=a+b+c </i>выполняется для любых трех чисел<i> a </i>,<i> b </i>и<i> c </i>. Докажите, что<i> ab=a+b </i>.
С числом разрешается проводить одно из двух действий: возводить в квадрат или прибавлять единицу. Даны числа19и98. Можно ли из них за одно и то же количество действий получить равные числа?
Часть подмножеств некоторого конечного множества выделена. Каждое выделенное подмножество состоит в точности из2<i>k </i>элементов (<i> k </i>– фиксированное натуральное число). Известно, что в каждом подмножестве, состоящем не более чем из(<i>k+</i>1)<i><sup>2</sup> </i>элементов, либо не содержится ни одного выделенного подмножества, либо все в нем содержащиеся выделенные подмножества имеют общий элемент. Докажите, что все выделенные подмножества имеют общий элемент.
Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше1, расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем1<i>/<img src="/storage/problem-media/109669/problem_109669_img_2.gif"> </i>. Докажите, что многоугольники не имеют общих внутренних точек.
Прямые, параллельные оси <i>Ox</i>, пересекают график функции <i>y = ax</i>³ + <i>bx</i>² + <i>cx + d</i>: первая – в точках <i>A, D</i> и <i>E</i>, вторая – в точках <i>B, C</i> и <i>F</i> (см. рис.). Докажите, что длина проекции дуги <i>CD</i> на ось <i>Ox</i> равна сумме длин проекций дуг <i>AB</i> и <i>EF</i>. <div align="center"><img src="/storage/problem-media/109668/problem_109668_img_2.gif"></div>