Олимпиадные задачи из источника «Региональный этап»
Найдите все такие пары простых чисел <i>p</i> и <i>q</i>, что <i>p</i>³ – <i>q</i><sup>5</sup> = (<i>p + q</i>)².
Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.
Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?
На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников.
Докажите, что числа от 1 до 16 можно записать в строку, но нельзя записать по кругу так, чтобы сумма любых двух соседних чисел была квадратом натурального числа.
Дан набор, состоящий из таких 1997 чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе равно 0.
Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены <i>запрещёнными</i>. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.
а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.
Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза. б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.
Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.
На доске записаны числа 1, 2, 3, ..., 1000. Двое по очереди стирают по одному числу. Игра заканчивается, когда на доске остаются два числа. Если их сумма делится на 3, то побеждает тот, кто делал первый ход, если нет – то его партнер. Кто из них выиграет при правильной игре?
Докажите, что если <center><i> <img src="/storage/problem-media/109920/problem_109920_img_2.gif">+<img src="/storage/problem-media/109920/problem_109920_img_3.gif">+<img src="/storage/problem-media/109920/problem_109920_img_4.gif">=<img src="/storage/problem-media/109920/problem_109920_img_5.gif">+<img src="/storage/problem-media/109920/problem_109920_img_6.gif">+<img src="/storage/problem-media/109920/problem_109920_img_7.gif">=
<img src="/storage/problem-media/109920/problem_109920_img_8.gif">+<img src="/storage/problem-media/109920/problem_109920_img_9.gif">+<img src="/storage/problem-media/109920/problem_109920_img_10.gif">
<...
а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей? б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных...
Дан набор, состоящий из таких 100 различных чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе положительно.
Дан куб со стороной 4. Можно ли целиком оклеить три его грани, имеющие общую вершину, 16 бумажными прямоугольными полосками размером 1×3?
Даны натуральные числа <i>m</i> и <i>n</i>. Докажите, что число 2<sup><i>n</i></sup> – 1 делится на число (2<sup><i>m</i></sup> – 1)² тогда и только тогда, когда число <i>n</i> делится на число <i>m</i>(2<sup><i>m</i></sup> – 1).
Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
1) проверять, равны ли выбранные два числа,
2) складывать выбранные числа,
3) по выбранным числам <i>a</i> и <i>b</i> находить корни уравнения <i>x</i>² + <i>ax + b</i> = 0, а если корней нет, выдавать сообщение об этом.
Результаты всех действий заносятся в память. Первоначально в памяти записано одно число <i>x</i>. Как с помощью МК-97 узнать, равно ли это число единице?
Для каких<i> α </i>существует функция<i> f </i>:<i> <img src="/storage/problem-media/109912/problem_109912_img_2.gif"><img src="/storage/problem-media/109912/problem_109912_img_3.gif"><img src="/storage/problem-media/109912/problem_109912_img_2.gif"> </i>, отличная от константы, такая, что <center><i>
f</i>(<i>α</i>(<i>x+y</i>))<i>=f</i>(<i>x</i>)<i>+f</i>(<i>y</i>)<i>;? </i></center>
Существуют ли выпуклая<i> n </i>-угольная (<i> n<img src="/storage/problem-media/109911/problem_109911_img_2.gif"> </i>4) и треугольная пирамиды такие, что четыре трехгранных угла<i> n </i>-угольной пирамиды равны трехгранным углам треугольной пирамиды?
Докажите, что если1<i><a<b<c </i>, то <center><i>
log <sub>a</sub></i>(<i>log <sub>a</sub> b</i>)<i>+log <sub>b</sub> </i>(<i>log <sub>b</sub> c</i>)<i>+log <sub>c</sub></i>(<i>log <sub>c</sub>a</i>)<i>></i>0<i>. </i></center>
Члены Государственной Думы образовали фракции так, что для любых двух фракций<i> A </i>и<i> B </i>(не обязательно различных)<i> <img src="/storage/problem-media/109909/problem_109909_img_2.gif"> </i>– тоже фракция (через<i> <img src="/storage/problem-media/109909/problem_109909_img_3.gif"> </i>обозначается множество всех членов Думы, не входящих в<i> C </i>). Докажите, что для любых двух фракций<i> A </i>и<i> B </i><i> A<img src="/storage/problem-media/109909/problem_109909_img_4.gif"> B </i>– также фракция.
Обозначим через <i>S</i>(<i>m</i>) сумму цифр натурального числа <i>m</i>. Докажите, что существует бесконечно много таких натуральных <i>n</i>, что <i>S</i>(3<i><sup>n</sup></i>) ≥ <i>S</i>(3<sup><i>n</i>+1</sup>).
Все вершины треугольника<i> ABC </i>лежат внутри квадрата<i> K </i>. Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника<i> ABC </i>, то хотя бы одна из полученных трех точек окажется внутри<i> K </i>.
Точки <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> – центры описанной и вписанной окружностей равнобедренного треугольника <i>ABC</i> (<i>AB = BC</i>). Описанные окружности треугольников <i>ABC</i> и <i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>A</i>, пересекаются в точках <i>A</i> и <i>D</i>. Докажите, что прямая <i>BD</i> касается описанной окружности треугольника <i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>A</i>.
Окружности <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> пересекаются в точках <i>M</i> и <i>N</i>. Докажите, что если вершины <i>A</i> и <i>C</i> некоторого прямоугольника <i>ABCD</i> лежат на окружности <i>S</i><sub>1</sub>, а вершины <i>B</i> и <i>D</i> – на окружности <i>S</i><sub>2</sub>, то точка пересечения диагоналей прямоугольника лежит на прямой <i>MN</i>.
Дан треугольник <i>ABC</i>. Точка <i>B</i><sub>1</sub> делит пополам длину ломаной <i>ABC</i> (составленной из отрезков <i>AB</i> и <i>BC</i>), точка <i>C</i><sub>1</sub> делит пополам длину ломаной <i>ACB</i>, точка <i>A</i><sub>1</sub> делит пополам длину ломаной <i>CAB</i>. Через точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> проводятся прямые <i>l<sub>A</sub>, l<sub>B</sub></i> и <i>l<sub>C</sub></i>, параллельные биссектрисам углов <i>BAC, ABC</i> и <i>ACB</i> соотв...
Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.
Докажите, что остроугольный треугольник полностью покрывается тремя квадратами, построенными на его сторонах как на диагоналях.