Олимпиадные задачи из источника «1995-1996» для 10 класса - сложность 2-3 с решениями

Докажите, что если  0 < <i>a, b</i> < 1,  то   <img align="middle" src="/storage/problem-media/109897/problem_109897_img_2.gif"> .

Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.

Пусть <i>a, b</i> и <i>c</i> – попарно взаимно простые натуральные числа. Найдите все возможные значения  <img align="absmiddle" src="/storage/problem-media/109894/problem_109894_img_2.gif">,  если известно, что это число целое.

В каждой клетке квадратной таблицы размером <i>n×n</i> клеток  (<i>n</i> ≥ 3)  записано число 1 или –1. Если взять любые две строки, перемножить числа, стоящие в них друг над другом и сложить <i>n</i> получившихся произведений, то сумма будет равна 0. Докажите, что число <i>n</i> делится на 4.

Верно ли, что из произвольного треугольника можно вырезать три равные фигуры, площадь каждой из которых больше четверти площади треугольника?

Докажите, что если <i>a, b, c</i> – положительные числа и  <i>ab + bc + ca > a + b + c</i>,  то  <i>a + b + c</i> > 3.

Существует ли такая бесконечная периодическая последовательность, состоящая из букв <i>a</i> и <i>b</i>, что при одновременной замене всех букв <i>a</i> на <i>aba</i> и букв <i>b</i> на <i>bba</i> она переходит в себя (возможно, со сдвигом)?

Найдите все такие натуральные <i>n</i>, что при некоторых различных натуральных <i>a, b, c</i> и <i>d</i> среди чисел <div align="center"><img src="/storage/problem-media/109883/problem_109883_img_2.gif"></div>есть по крайней мере два числа, равных<i>n</i>.

Дана функция<i> f</i>(<i>x</i>)<i> = | </i>4<i> - </i>4<i>|x|| - </i>2. Сколько решений имеет уравнение<i> f</i>(<i>f</i>(<i>x</i>))<i> = x </i>?

Многочлен <i>P</i>(<i>x</i>) степени <i>n</i> имеет <i>n</i> различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?

Длина наибольшей стороны треугольника равна 1. Докажите, что три круга радиуса<i> <img src="/storage/problem-media/109880/problem_109880_img_2.gif"> </i>с центрами в вершинах покрывают весь треугольник.

Назовем медианой системы 2<i> n </i>точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2<i> n </i>точек, никакие три из которых не лежат на одной прямой?

На столе лежат две кучки монет. Известно, что суммарный вес монет из первой кучки равен суммарному весу монет из второй кучки, а для каждого натурального числа <i>k</i>, не превосходящего числа монет как в первой, так и во второй кучке, суммарный вес <i>k</i> самых тяжелых монет из первой кучки не больше суммарного веса <i>k</i> самых тяжелых монет из второй кучки. Докажите, что если заменить каждую монету, вес которой не меньше <i>x</i>, на монету веса <i>x</i> (в обеих кучках), то первая кучка монет окажется не легче второй, каково бы ни было положительное число <i>x</i>.

Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.

Пусть натуральные числа <i>x, y, p, n</i> и <i>k</i> таковы, что  <i> x<sup>n</sup> + y<sup>n</sup> = p<sup>k</sup></i>.

Докажите, что если число <i>n</i>  (<i>n</i> > 1)  нечётно, а число <i>p</i> нечётное простое, то <i>n</i> является степенью числа <i>p</i> (с натуральным показателем).

Во взводе служат три сержанта и несколько солдат. Сержанты по очереди дежурят по взводу. Командир издал такой приказ.

  1. За каждое дежурство должен быть дан хотя бы один наряд вне очереди.

  2. Никакой солдат не должен иметь более двух нарядов и получать более одного наряда за одно дежурство.

  3. Списки получивших наряды ни за какие два дежурства не должны совпадать.   4. Сержант, первым нарушивший одно из изложенных выше правил, наказывается гауптвахтой.

Сможет ли хотя бы один из сержантов, не сговариваясь с другими, давать наряды так, чтобы не попасть на гауптвахту?

В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах?

На координатной плоскости расположены четыре фишки, центры которых имеют целочисленные координаты. Разрешается сдвинуть любую фишку на вектор, соединяющий центры любых двух из остальных фишек. Докажите, что несколькими такими перемещениями можно совместить любые две наперед заданные фишки.

Существуют ли три натуральных числа, больших 1 и таких, что квадрат каждого из них, уменьшенный на единицу, делится на каждое из остальных?

Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.

Может ли число, получаемое выписыванием в строку друг за другом целых чисел от 1 до<i> n </i>(<i> n></i>1), одинаково читаться слева направо и справа налево?

В треугольнике <i>ABC</i> взята такая точка <i>O</i>, что  ∠<i>COA</i> = ∠<i>B</i> + 60°,  ∠<i>COB</i> = ∠<i>A</i> + 60°, <i>AOB</i> = ∠<i>C</i> + 60°.  Докажите, что если из отрезков <i>AO, BO</i> и <i>CO</i> можно составить треугольник, то из высот треугольника <i>ABC</i> тоже можно составить треугольник и эти треугольники подобны.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка