Олимпиадные задачи из источника «Заключительный этап»

Можно ли прямоугольник $5 \times 7$ покрыть уголками из трёх клеток (т.е. фигурками, которые получаются из квадрата $2 \times 2$ удалением одной клетки), не выходящими за его пределы, в несколько слоёв так, чтобы каждая клетка прямоугольника была покрыта одинаковым числом клеток, принадлежащих уголкам?

На столе лежат две кучки монет. Известно, что суммарный вес монет из первой кучки равен суммарному весу монет из второй кучки, а для каждого натурального числа <i>k</i>, не превосходящего числа монет как в первой, так и во второй кучке, суммарный вес <i>k</i> самых тяжелых монет из первой кучки не больше суммарного веса <i>k</i> самых тяжелых монет из второй кучки. Докажите, что если заменить каждую монету, вес которой не меньше <i>x</i>, на монету веса <i>x</i> (в обеих кучках), то первая кучка монет окажется не легче второй, каково бы ни было положительное число <i>x</i>.

Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.

В Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом.

Докажите, что найдутся два комитета, имеющие не менее четырёх общих членов.

Пусть натуральные числа <i>x, y, p, n</i> и <i>k</i> таковы, что  <i> x<sup>n</sup> + y<sup>n</sup> = p<sup>k</sup></i>.

Докажите, что если число <i>n</i>  (<i>n</i> > 1)  нечётно, а число <i>p</i> нечётное простое, то <i>n</i> является степенью числа <i>p</i> (с натуральным показателем).

<center><i> <img src="/storage/problem-media/109632/problem_109632_img_2.gif"> </i></center> Центры<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих о...

Каких чисел больше среди натуральных чисел от 1 до 1000000 включительно: представимых в виде суммы точного квадрата и точного куба или не представимых в таком виде?

Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида  <i>x</i>² + <i>px + q</i>,  среди коэффициентов <i>p</i> и <i>q</i> которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?

Дан выпуклый многоугольник, никакие две стороны которого не параллельны. Для каждой из его сторон рассмотрим угол, под которым она видна из вершины, наиболее удалённой от прямой, содержащей эту сторону. Докажите, что сумма всех таких углов равна 180°.

Во взводе служат три сержанта и несколько солдат. Сержанты по очереди дежурят по взводу. Командир издал такой приказ.

  1. За каждое дежурство должен быть дан хотя бы один наряд вне очереди.

  2. Никакой солдат не должен иметь более двух нарядов и получать более одного наряда за одно дежурство.

  3. Списки получивших наряды ни за какие два дежурства не должны совпадать.   4. Сержант, первым нарушивший одно из изложенных выше правил, наказывается гауптвахтой.

Сможет ли хотя бы один из сержантов, не сговариваясь с другими, давать наряды так, чтобы не попасть на гауптвахту?

В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах?

Докажите, что если числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i>  отличны от нуля и для любого целого  <i>k</i> = 0, 1, ..., <i>n</i>  (<i>n < m</i> – 1)  выполняется равенство:

<i>a</i><sub>1</sub> + <i>a</i><sub>2</sub>·2<sup><i>k</i></sup> + <i>a</i><sub>3</sub>·3<sup><i>k</i></sup> + ... + <i>a<sub>m</sub>m<sup>k</sup></i> = 0,  то в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i> ...

Найдите все такие натуральные <i>n</i>, что при некоторых взаимно простых <i>x</i> и <i>y</i> и натуральном  <i>k</i> > 1,  выполняется равенство  3<i><sup>n</sup> = x<sup>k</sup> + y<sup>k</sup></i>.

На координатной плоскости расположены четыре фишки, центры которых имеют целочисленные координаты. Разрешается сдвинуть любую фишку на вектор, соединяющий центры любых двух из остальных фишек. Докажите, что несколькими такими перемещениями можно совместить любые две наперед заданные фишки.

В строку в неизвестном порядке записаны все целые числа от 1 до 100. За один вопрос про любые 50 чисел можно узнать, в каком порядке относительно друг друга записаны эти 50 чисел. За какое наименьшее число вопросов наверняка можно узнать, в каком порядке записаны все 100 чисел?

Существует ли такое конечное множество <i>M</i> ненулевых действительных чисел, что для любого натурального <i>n</i> найдется многочлен степени не меньше <i>n</i> с коэффициентами из множества <i>M</i>, все корни которого действительны и также принадлежат <i>M</i>?

Существуют ли три натуральных числа, больших 1 и таких, что квадрат каждого из них, уменьшенный на единицу, делится на каждое из остальных?

Докажите, что при  <i>n</i> ≥ 5  сечение пирамиды, в основании которой лежит правильный <i>n</i>-угольник, не может являться правильным (<i>n</i>+1)-угольником.

Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.

Может ли число, получаемое выписыванием в строку друг за другом целых чисел от 1 до<i> n </i>(<i> n></i>1), одинаково читаться слева направо и справа налево?

В равнобедренном треугольнике<i> ABC </i>(<i> AB=BC </i>) проведена биссектриса<i> CD </i>. Прямая, перпендикулярная<i> CD </i>и проходящая через центр описанной около треугольника<i> ABC </i>окружности, пересекает<i> BC </i>в точке<i> E </i>. Прямая, проходящая через точку<i> E </i>параллельно<i> CD </i>, пересекает<i> AB </i>в точке<i> F </i>. Докажите, что<i> BE=FD </i>.

На стороне<i> BC </i>выпуклого четырёхугольника<i> ABCD </i>взяты точки<i> E </i>и<i> F </i>(точка<i> E </i>ближе к точке<i> B </i>, чем точка<i> F </i>). Известно, что<i> <img src="/storage/problem-media/108185/problem_108185_img_2.gif"> BAE = <img src="/storage/problem-media/108185/problem_108185_img_2.gif"> CDF </i>и<i> <img src="/storage/problem-media/108185/problem_108185_img_2.gif"> EAF = <img src="/storage/problem-media/108185/problem_108185_img_2.gif"> FDE </i>. Докажите, что<i> <img src="/storage/problem-media/108185/problem_108185_img_2.gif"> FAC = <img src="/storage/problem-medi...

В равнобедренном треугольнике <i>ABC</i>  (<i>AC = BC</i>)  точка <i>O</i> – центр описанной окружности, точка <i>I</i> – центр вписанной окружности, а точка <i>D</i> на стороне <i>BC</i> такова, что прямые <i>OD</i> и <i>BI</i> перпендикулярны. Докажите, что прямые <i>ID</i> и <i>AC</i> параллельны.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка