Олимпиадные задачи из источника «38 турнир (2016/2017 год)» для 1-11 класса - сложность 3-5 с решениями
38 турнир (2016/2017 год)
НазадВ Чикаго живут 36 гангстеров, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём нет двух банд с совпадающим составом. Оказалось, что гангстеры, состоящие в одной банде, не враждуют, но если гангстер не состоит в какой-то банде, то он враждует хотя бы с одним её участником. Какое наибольшее число банд могло быть в Чикаго?
При каких натуральных <i>n</i> для каждого целого <i>k ≥ n</i> найдётся кратное <i>n</i> число с суммой цифр <i>k</i>?
В треугольнике <i>ABC</i> c углом <i>A</i>, равным 45°, проведена медиана <i>AM</i>. Прямая <i>b</i> симметрична прямой <i>AM</i> относительно высоты <i>BB</i><sub>1</sub>, а прямая <i>c</i> симметрична прямой <i>AM</i> относительно высоты <i>CC</i><sub>1</sub>. Прямые <i>b</i> и <i>c</i> пересеклись в точке <i>X</i>. Докажите, что <i>AX = BC</i>.
Петя раскрасил каждую клетку квадрата 1000×1000 в один из 10 цветов. Также он придумал такой 10-клеточный многоугольник Ф, что при любом способе положить его по границам клеток на раскрашенный квадрат, все 10 накрытых им клеток будут разного цвета. Обязательно ли Ф – прямоугольник?
Доминошки 1×2 кладут без наложений на шахматную доску 8×8. При этом доминошки могут вылезать за границу доски, но центр каждой доминошки должен лежать строго внутри доски (не на границе). Положите таким образом на доску а) хотя бы 40 доминошек; б) хотя бы 41 доминошку; в) более 41 доминошки.
Кузнечик умеет прыгать по полоске из <i>n</i> клеток на 8, 9 и 10 клеток в любую сторону. Будем называть натуральное число <i>n пропрыгиваемым</i>, если кузнечик может, начав с некоторой клетки, обойти всю полоску, побывав на каждой клетке ровно один раз. Найдите хотя бы одно <i>n</i> > 50, которое не является пропрыгиваемым.
Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе?
В выпуклом шестиугольнике <i>ABCDEF</i> все стороны равны, а также <i>AD = BE = CF</i>. Докажите, что в этот шестиугольник можно вписать окружность.
Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
а) слева; б) в центре; в) справа? <div align="center"><img src="/storage/problem-media/66110/problem_66110_img_2.gif"></div>(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)
Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Верно ли, что оси симметрии графиков совпадают?
По кругу стоят 10 детей разного роста. Время от времени один из них перебегает на другое место (между какими-то двумя детьми). Дети хотят как можно скорее встать по росту в порядке возрастания по часовой стрелке (от самого низкого к самому высокому). Какого наименьшего количества таких перебежек им заведомо хватит, как бы они ни стояли изначально?
Даны две концентрические окружности и точка <i>A</i> внутри меньшей из них. Угол величиной α с вершиной в <i>A</i> высекает на этих окружностях по дуге. Докажите, что если дуга большей окружности имеет угловой размер α, то и дуга меньшей имеет угловой размер α.
На прямой сидит конечное число лягушек в различных целых точках. За ход ровно одна лягушка прыгает на 1 вправо, причём они по-прежнему должны быть в различных точках. Мы вычислили, сколькими способами лягушки могут сделать <i>n</i> ходов (для некоторого начального расположения лягушек). Докажите, что если бы мы разрешили тем же лягушкам прыгать влево, запретив прыгать вправо, то способов сделать <i>n</i> ходов было бы столько же.
Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен <i>P</i>(<i>x</i>) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение <i>P</i>(<i>x</i>) = <i>a</i>. Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?
Можно ли квадрат со стороной 1 разрезать на две части и покрыть ими какой-нибудь круг диаметра больше 1?
На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы?
Четырёхугольник <i>ABCD</i> вписан в окружность Ω с центром <i>O</i>, причём <i>O</i> не лежит на диагоналях четырёхугольника. Описанная окружность Ω<sub>1</sub> треугольника <i>AOC</i> проходит через середину диагонали <i>BD</i>. Докажите, что описанная окружность Ω<sub>2</sub> треугольника <i>BOD</i> проходит через середину диагонали <i>AC</i>.
а) Группа людей прошла опрос, состоящий из 20 вопросов, на каждый из которых возможно два ответа. После опроса оказалось, что для любых 10 вопросов и любой комбинации ответов на эти вопросы существует человек, давший именно эти ответы на эти вопросы. Обязательно ли найдутся два человека, у которых ответы ни на один вопрос не совпали?
б) Решите ту же задачу, если на каждый вопрос есть 12 вариантов ответа.
Дан правильный 2<i>n</i>-угольник <i>A</i><sub>1</sub><i>A</i><sub>1</sub>...<i>A</i><sub>2<i>n</i></sub> с центром <i>O</i>, причём <i>n</i> ≥ 5. Диагонали <i>A</i><sub>2</sub><i>A</i><sub><i>n</i>–1</sub> и <i>A</i><sub>3</sub><i>A<sub>n</sub></i> пересекаются в точке <i>F</i>, а <i>A</i><sub>1</sub><i>A</i><sub>3</sub> и <i>A</i><sub>2</sub><i>A</i><sub>2<i>n</i>–2</sub> – в точке <i>P</i>.
Докажите, что <i>PF = PO</i&g...
Квадратная коробка конфет разбита на 49 равных квадратных ячеек. В каждой ячейке лежит шоколадная конфета – либо чёрная, либо белая. За один присест Саша может съесть две конфеты, если они одного цвета и лежат в соседних по стороне или по углу ячейках. Какое наибольшее количество конфет гарантированно может съесть Саша, как бы ни лежали конфеты в коробке?
Произвольный треугольник разрезали на равные треугольники прямыми, параллельными сторонам (как показано на рисунке).
Докажите, что ортоцентры шести закрашенных треугольников лежат на одной окружности. <div align="center"><img src="/storage/problem-media/65872/problem_65872_img_2.gif"></div>
Докажите, что в прямоугольном треугольнике ортоцентр треугольника, образованного точками касания сторон с вписанной окружностью, лежит на высоте, проведённой из прямого угла.
Петя нарисовал многоугольник площадью 100 клеток, проводя границы по линиям квадратной сетки. Он проверил, что его можно разрезать по границам клеток и на два равных многоугольника, и на 25 равных многоугольников. Обязательно ли тогда его можно разрезать по границам клеток и на 50 равных многоугольников?
На прямой отмечено 100 точек, и ещё одна точка отмечена вне прямой. Рассмотрим все треугольники с вершинами в этих точках.
Какое наибольшее количество из них могут быть равнобедренными?