Олимпиадные задачи из источника «весенний тур, сложный вариант, 8-9 класс»
весенний тур, сложный вариант, 8-9 класс
НазадДоминошки 1×2 кладут без наложений на шахматную доску 8×8. При этом доминошки могут вылезать за границу доски, но центр каждой доминошки должен лежать строго внутри доски (не на границе). Положите таким образом на доску а) хотя бы 40 доминошек; б) хотя бы 41 доминошку; в) более 41 доминошки.
Кузнечик умеет прыгать по полоске из <i>n</i> клеток на 8, 9 и 10 клеток в любую сторону. Будем называть натуральное число <i>n пропрыгиваемым</i>, если кузнечик может, начав с некоторой клетки, обойти всю полоску, побывав на каждой клетке ровно один раз. Найдите хотя бы одно <i>n</i> > 50, которое не является пропрыгиваемым.
Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе?
В выпуклом шестиугольнике <i>ABCDEF</i> все стороны равны, а также <i>AD = BE = CF</i>. Докажите, что в этот шестиугольник можно вписать окружность.
Взяли несколько положительных чисел и построили по ним такую последовательность: <i>a</i><sub>1</sub> – сумма исходных чисел, <i>a</i><sub>2</sub> – сумма квадратов исходных чисел, <i>a</i><sub>3</sub> – сумма кубов исходных чисел, и т.д.
а) Могло ли случиться, что до <i>a</i><sub>5</sub> последовательность убывает (<i>a</i><sub>1</sub> > <i>a</i><sub>2</sub> > <i>a</i><sub>3</sub> > <i>a</i><sub>4</sub> > <i>a</i><sub>5</sub>), а начиная с <i>a</i><sub>5</sub> – возрастает (<i>a</i><sub>5</sub> < <i>a...
Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
а) слева; б) в центре; в) справа? <div align="center"><img src="/storage/problem-media/66110/problem_66110_img_2.gif"></div>(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)
В шахматном турнире было 10 участников. В каждом туре участники разбивались на пары и в каждой паре играли друг с другом одну игру. В итоге каждый участник сыграл с каждым ровно один раз, причём не меньше чем в половине всех игр участники были земляками (из одного города). Докажите, что в каждом туре хоть одна игра была между земляками.