Олимпиадные задачи из источника «2007 год» для 3-9 класса - сложность 2 с решениями
На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Разделите круг тремя прямолинейными разрезами на: а) 4 части; б) 5 частей; в) 6 частей; г) 7 частей.
Люди заходят с улицы в метро равномерно. Пройдя через турникеты, они оказываются в небольшом зале перед эскалаторами. Двери на вход только что открылись, и сначала зал перед эскалаторами был пустой, а на спуск работал только один эскалатор. Один эскалатор не справлялся с толпой, так что за 6 минут зал наполовину заполнился. Тогда включили на спуск второй эскалатор, но толпа продолжала увеличиваться – ещё через 15 минут зал был полон. За какое время зал опустеет, если включить третий эскалатор?
Вырежьте из фигуры, изображенной на рисунке, одну клетку и разрежьте оставшуюся фигуру на четыре равные части. <img src="/storage/problem-media/109474/problem_109474_img_2.gif">
На клетчатой бумаге нарисован квадрат со стороной5клеток. Его требуется разбить на 5 частей одинаковой площади, проводя отрезки внутри квадрата только по линиям сетки. Может ли оказаться так, что суммарная длина проведенных отрезков не превосходит 16 клеток?
На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске?
На стороне<i> AC </i>треугольника<i> ABC </i>взята точка<i> D </i>так, что<i> AD:DC=</i>1<i>:</i>2. Докажите, что у треугольников<i> ADB </i>и<i> CDB </i>есть по равной медиане.
Мальчик стоит на автобусной остановке и мёрзнет, а автобуса нет. Ему хочется пройтись до следующей остановки. Мальчик бегает вчетверо медленнее автобуса и может увидеть автобус на расстоянии 2 км. До следующей остановки ровно километр. Имеет ли смысл идти, или есть риск упустить автобус?
Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.
Числа <i>a, b</i> и <i>c</i> отличны от нуля и выполняются равенства: <i>a + <sup>b</sup></i>/<i><sub>c</sub> = b + <sup>c</sup></i>/<i><sub>a</sub> = c + <sup>a</sup></i>/<sub><i>b</i></sub> = 1. Докажите, что <i>ab + bc + ca</i> = 0.
Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?
В выпуклом пятиугольнике<i> ABCDE </i><i> <img src="/storage/problem-media/109461/problem_109461_img_2.gif"> A=<img src="/storage/problem-media/109461/problem_109461_img_2.gif"> B=<img src="/storage/problem-media/109461/problem_109461_img_2.gif"> D=</i>90<i><sup>o</sup> </i>. Найдите угол<i> ADB </i>, если известно, что в данный пятиугольник можно вписать окружность.
В выпуклом четырехугольнике <i>ABCD</i> выполняются равенства: ∠<i>CBD</i> = ∠<i>CAB</i> и ∠<i>ACD</i> = ∠<i>ADB</i>.
Докажите, что из отрезков <i>BC, AD</i> и <i>AC</i> можно сложить прямоугольный треугольник.
Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал <sup>1</sup>/<sub>7</sub> часть от общего количества. Сколько было школьников?
На рисунке изображены графики трёх квадратных трёчленов.
Можно ли подобрать такие числа <i>a, b</i> и <i>c</i>, чтобы это были графики трёхчленов <i>ax</i>² + <i>bx + c, bx</i>² + <i>cx + a</i> и <i>cx</i>² + <i>ax + b</i>? <div align="center"><img src="/storage/problem-media/109457/problem_109457_img_2.gif"></div>
В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?
Определите, на какую наибольшую натуральную степень числа 2007 делится 2007!
Сторону<i> АВ </i>треугольника<i> АВ</i>Спродолжили за вершину<i> В </i>и выбрали на луче<i> АВ </i>точку<i> А<sub>1</sub> </i>так, что точка<i> В </i>– середина отрезка<i> АА<sub>1</sub> </i>. Сторону<i> В</i>Спродолжили за вершинуСи отметили на продолжении точку<i> В<sub>1</sub> </i>так, чтоС– середина<i> ВВ<sub>1</sub> </i>. Аналогично, продолжили сторонуС<i>А </i>за вершину<i> А </i>и отметили на продолжении точкуС<i><sub>1</sub> </i>так, что<i> А </i>– серединаСС<i><sub>1</sub> </i>. Найдите площадь треугольника<i> А<sub>1&...
Может ли вершина параболы <i>у</i> = 4<i>х</i>² – 4(<i>а</i> + 1)<i>х + а</i> лежать во второй координатной четверти при каком-нибудь значении <i>а</i>?
Функция<i> f </i>такова, что для любых положительных<i> x </i>и<i> y </i>выполняется равенство<i> f</i>(<i>xy</i>)<i> = f</i>(<i>x</i>)<i> + f</i>(<i>y</i>). Найдите<i> f</i>(2007), если<i> f</i>(<i><img src="/storage/problem-media/109438/problem_109438_img_2.gif"></i>)<i> = </i>1.
Найдите все нечётные натуральные числа, большие 500, но меньшие 1000, у каждого из которых сумма последних цифр всех делителей (включая 1 и само число) равна 33.
Что больше: <img align="middle" src="/storage/problem-media/109435/problem_109435_img_2.gif"> или <img align="middle" src="/storage/problem-media/109435/problem_109435_img_3.gif"> ?