Олимпиадные задачи из источника «2010/11» - сложность 3 с решениями

Найдите все простые числа <i>p, q</i> и <i>r</i>, для которых выполняется равенство:  <i>p + q</i> = (<i>p – q</i>)<sup><i>r</i></sup>.

В выпуклом четырёхугольнике <i>ABCD</i>:  ∠<i>ВАС</i> = 20°,  ∠<i>ВСА</i> = 35°,  ∠<i>ВDС</i> = 40°,  ∠<i>ВDА</i> = 70°.

Найдите угол между диагоналями четырёхугольника.

Для различных положительных чисел <i>а</i> и <i>b</i> выполняется равенство  <img align="absmiddle" src="/storage/problem-media/116018/problem_116018_img_2.png">.  Докажите, что <i>а</i> и <i>b</i> – взаимно обратные числа.

Четырёхугольник <i>ABCD</i> вписан в окружность. Биссектрисы углов <i>В</i> и <i>С</i> пересекаются в точке, лежащей на отрезке <i>AD</i>.

Найдите <i>AD</i>, если  <i>АВ</i> = 5,  <i>СD</i> = 3.

Докажите, что если  <i>x</i> > 0,  <i>y</i> > 0,  <i>z</i> > 0 и  <i>x</i>² + <i>y</i>² + <i>z</i>² = 1,  то  <img align="absmiddle" src="/storage/problem-media/115995/problem_115995_img_2.gif">,  и укажите, в каком случае достигается равенство.

Найдите наименьшее значение  <i>x</i>² + <i>y</i>²,  если  <i>x</i><sup>2</sup> – <i>y</i>² + 6<i>x</i> + 4<i>y</i> + 5 = 0.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка