Олимпиадные задачи из источника «2010/11» - сложность 3 с решениями
Найдите все простые числа <i>p, q</i> и <i>r</i>, для которых выполняется равенство: <i>p + q</i> = (<i>p – q</i>)<sup><i>r</i></sup>.
В выпуклом четырёхугольнике <i>ABCD</i>: ∠<i>ВАС</i> = 20°, ∠<i>ВСА</i> = 35°, ∠<i>ВDС</i> = 40°, ∠<i>ВDА</i> = 70°.
Найдите угол между диагоналями четырёхугольника.
Для различных положительных чисел <i>а</i> и <i>b</i> выполняется равенство <img align="absmiddle" src="/storage/problem-media/116018/problem_116018_img_2.png">. Докажите, что <i>а</i> и <i>b</i> – взаимно обратные числа.
Четырёхугольник <i>ABCD</i> вписан в окружность. Биссектрисы углов <i>В</i> и <i>С</i> пересекаются в точке, лежащей на отрезке <i>AD</i>.
Найдите <i>AD</i>, если <i>АВ</i> = 5, <i>СD</i> = 3.
Докажите, что если <i>x</i> > 0, <i>y</i> > 0, <i>z</i> > 0 и <i>x</i>² + <i>y</i>² + <i>z</i>² = 1, то <img align="absmiddle" src="/storage/problem-media/115995/problem_115995_img_2.gif">, и укажите, в каком случае достигается равенство.
Найдите наименьшее значение <i>x</i>² + <i>y</i>², если <i>x</i><sup>2</sup> – <i>y</i>² + 6<i>x</i> + 4<i>y</i> + 5 = 0.