Назад
Задача

В прямоугольном бильярде размером p×2q, где p и q – нечётные числа, сделаны лузы в каждом углу и в середине каждой стороны длины 2q. Из угла выпущен шарик под углом 45° к стороне. Доказать, что шарик обязательно попадёт в одну из средних луз.

Решение

Разобьём плоскость на прямоугольники p×q, то есть рассмотрим сетку с шагом q по горизонтали и p – по вертикали. Бильярд занимает два соседних прямоугольника этой сетки. Распрямим путь шара, симметрично отражая его относительно стенок. Тогда шар будет двигаться по прямой  y = x  (точнее, по лучу этой прямой, выходящему из начала координат), а лузы будут расположены в узлах сетки. Этот луч впервые пройдёт через узел сетки в точке с координатами  (m, m),  где  m = НОК(p, q).  Поскольку m нечётно, эта точка соответствует средней лузе.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет