Олимпиадные задачи из источника «1952 год» - сложность 2 с решениями
Решить систему уравнений: <i>x</i><sub>1</sub><i>x</i><sub>2</sub> = <i>x</i><sub>2</sub><i>x</i><sub>3</sub> = ... = <i>x</i><sub><i>n</i>–1</sub><i>x<sub>n</sub> = x<sub>n</sub>x</i><sub>1</sub> = 1.
Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.
Дан отрезок <i>AB</i>. Найдите геометрическое место вершин <i>C</i> остроугольных треугольников <i>ABC</i>.
Докажите, что если квадрат числа начинается с 0,999...9 (100 девяток), то и само число начинается с 0,999...9 (100 девяток).
Для выпуклого четырёхугольника<i>ABCD</i>соблюдено условие:<i>AB</i>+<i>CD</i>=<i>BC</i>+<i>DA</i>. Докажите, что окружность, вписанная в$\Delta$<i>ABC</i>, касается окружности, вписанной в$\Delta$<i>ACD</i>.
Если при любом положительном <i>p</i> все корни уравнения <i>ax</i>² + <i>bx + c + p</i> = 0 действительны и положительны, то коэффициент <i>a</i> равен нулю. Докажите.
В трёхгранный угол с вершиной <i>S</i> вписана сфера с центром в точке <i>O</i>.
Докажите, что плоскость, проходящая через три точки касания, перпендикулярна к прямой <i>SO</i>.
Докажите, что 2<sup><i>n</i></sup> > (1 – <i>x</i>)<sup><i>n</i></sup> + (1 + <i>x</i>)<sup><i>n</i></sup> при целом <i>n</i> ≥ 2 и |<i>x</i>| < 1.
Найдите соотношение между <div align="CENTER"> arcsin cos arcsin <i>x</i> и arccos sin arccos <i>x</i>. </div>
Докажите, что<div align="CENTER"> $\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1, </div>если |<i>x</i>| < 1 и |<i>y</i>| < 1.
Дана геометрическая прогрессия, знаменатель которой — целое число (не равное 0 и -1). Докажите, что сумма любого числа произвольно выбранных её членов не может равняться никакому члену этой прогрессии.
Докажите, что если ортоцентр делит высоты треугольника в одном и том же отношении, то этот треугольник — правильный.
Два человека <i>A</i> и <i>B</i> должны попасть из пункта <i>M</i> в пункт <i>N</i>, расположенный в 15 км от <i>M</i>. Пешком они могут передвигаться со скоростью 6 км/ч. Кроме того, в их распоряжении есть велосипед, на котором можно ехать со скоростью 15 км/ч. <i>A</i> отправляется в путь пешком, а <i>B</i> едет на велосипеде до встречи с пешеходом <i>C</i>, идущим из <i>N</i> и <i>M</i>. Дальше <i>B</i> идёт пешком, а <i>C</i> едет на велосипеде до встречи с <i>A</i> и передаёт ему велосипед, на котором тот и приезжает в <i>N</i>. Когда должен выйти из <i>N</i> пешеход <i>C</i>, чтобы <i>A<...