Олимпиадные задачи из источника «1952 год» для 10 класса
Докажите, что ни при каком целом <i>A</i> многочлен 3<i>x</i><sup>2<i>n</i></sup> + <i>Ax</i><sup><i>n</i></sup> + 2 не делится на многочлен 2<i>x</i><sup>2<i>m</i></sup> + <i>Ax</i><sup><i>m</i></sup> + 3.
В равнобедренном треугольнике <i>ABC</i> ∠<i>ABC</i> = 20°. На равных сторонах <i>CB</i> и <i>AB</i> взяты соответственно точки <i>P</i> и <i>Q</i> так, что ∠<i>PAC</i> = 50° и ∠<i>QCA</i> = 60°.
Докажите, что ∠<i>PQC</i> = 30°.
Поместить в полый куб с ребром<i>a</i>три цилиндра диаметра${\frac{a}{2}}$и высоты<i>a</i>так, чтобы они не могли менять своего положения внутри куба.
Решить систему уравнений: <i>x</i><sub>1</sub><i>x</i><sub>2</sub> = <i>x</i><sub>2</sub><i>x</i><sub>3</sub> = ... = <i>x</i><sub><i>n</i>–1</sub><i>x<sub>n</sub> = x<sub>n</sub>x</i><sub>1</sub> = 1.
Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.
Если при любом положительном <i>p</i> все корни уравнения <i>ax</i>² + <i>bx + c + p</i> = 0 действительны и положительны, то коэффициент <i>a</i> равен нулю. Докажите.
Докажите, что 2<sup><i>n</i></sup> > (1 – <i>x</i>)<sup><i>n</i></sup> + (1 + <i>x</i>)<sup><i>n</i></sup> при целом <i>n</i> ≥ 2 и |<i>x</i>| < 1.
Дана последовательность целых чисел, построенная следующим образом:<i>a</i><sub>1</sub>— произвольное трёхзначное число,<i>a</i><sub>2</sub>— сумма квадратов его цифр,<i>a</i><sub>3</sub>— сумма квадратов цифр числа<i>a</i><sub>2</sub>и т.д. Докажите, что в последовательности<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,<i>a</i><sub>3</sub>, ...обязательно встретится либо 1, либо 4.
$\Delta$<i>ABC</i>разбит прямой<i>BD</i>на два треугольника. Докажите, что сумма радиусов окружностей, вписанных в$\Delta$<i>ABD</i>и$\Delta$<i>DBC</i>, больше радиуса окружности, вписанной в$\Delta$<i>ABC</i>.
Докажите, что<div align="CENTER"> $\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1, </div>если |<i>x</i>| < 1 и |<i>y</i>| < 1.
Даны 3 скрещивающиеся прямые. Докажите, что они будут общими перпендикулярами к своим общим перпендикулярам.
Дана геометрическая прогрессия, знаменатель которой — целое число (не равное 0 и -1). Докажите, что сумма любого числа произвольно выбранных её членов не может равняться никакому члену этой прогрессии.