Олимпиадные задачи из источника «Кружки МЦНМО» для 9 класса
а) Аборигены поймали Кука и просят за его выкуп ровно 455 рупий 50 монетами. Смогут ли соратники Кука выкупить его на таких условиях, если в тех краях имеют хождение только монеты в 5, 17 и 31 рупии?
б) А если бы аборигены хотели получить сумму в 910 рупий 50 монетами по 10, 34 и 62 рупии?
На каждом километре шоссе между сёлами Ёлкино и Палкино стоит столб с табличкой, на одной стороне которой написано, сколько километров до Ёлкино, а на другой – до Палкино. Боря заметил, что на каждом столбе сумма всех <b>цифр</b> равна 13. Каково расстояние от Ёлкино до Палкино?
Найти натуральное наименьшее целое число n такое, что n делится на 19, а n+2 делится на 82.
Дано трёхзначное число, у которого первая и последняя цифра одинаковые.
Доказать, что число делится на 7 тогда и только тогда, когда делится на 7 сумма второй и третьей цифр.
Доказать, что число <i>n</i><sup>5</sup> – 5<i>n</i>³ + 4<i>n</i> делится на 120 при любом натуральном <i>n</i>.
Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Винни-Пух решил позавтракать. Он налил себе стакан чая и добавил сливок из большого кувшина. Но как только он перемешал сливки и чай, то понял, что хочет пить чай без сливок. Недолго думая, он вылил из стакана в кувшин столько же чая со сливками, сколько сначала взял оттуда сливок. Конечно же, при переливании чай от сливок не отделился, и у Винни-Пуха образовались две смеси чая и сливок – в стакане и в кувшине. Тогда Винни-Пух задумался: чего же получилось больше – чая в кувшине со сливками или сливок в стакане чая? А как думаете вы?
Докажите, что число способов расставить на шахматной доске максимальное число ферзей чётно.
Какое максимальное число королей, не бьющих друг друга, можно расставить на шахматной доске 8×8?
Восстановите пример на умножение <div align="center"><img src="/storage/problem-media/102863/problem_102863_img_2.gif"></div>
Решите уравнение 12<i>a</i> + 11<i>b</i> = 2002 в натуральных числах.
Решите уравнение в целых числах <i>m</i>² − <i>n</i>² = 2002.
На какие простые числа, меньшие 17, делится число 2002<sup>2002</sup> − 1?
Клетки квадратной таблицы 15×15 раскрашены в красный, синий и зелёный цвета.
Докажите, что найдутся, по крайней мере, две строки, в которых клеток хотя бы одного цвета поровну.
<b>Два взвешивания.</b>Имеется 7 внешне одинаковых монет, среди которых 5 настоящих (все — одинакового веса) и 2 фальшивых (одинакового между собой веса, но легче настоящих). Как с помощью двух взвешиваний на чашечных весах без гирь выделить 3 настоящие монеты?
<b>Три попарно касающиеся окружности.</b>Из трех данных точек как из центров постройте три попарно касающиеся окружности.
Решите систему уравнений:
<sup>1</sup>/<sub><i>x</i></sub> + <sup>1</sup>/<sub><i>y</i></sub> = 6,
<sup>1</sup>/<sub><i>y</i></sub> + <sup>1</sup>/<sub><i>z</i></sub> = 4,
<sup>1</sup>/<sub><i>z</i></sub> + <sup>1</sup>/<sub><i>x</i></sub> = 5.
<b> Режем прямоугольник.</b>Клетчатый прямоугольник разрезали на прямоугольники 1 х 2 (доминошки) так, что любая прямая, идущая по линиям сетки, рассекает кратное четырем число доминошек. Докажите, что длина одной из сторон делится на 4.
Баба-Яга и Кащей собрали некоторое количество мухоморов. Количество крапинок на мухоморах Бабы-Яги в 13 раз больше, чем на мухоморах Кащея, но после того, как Баба-Яга отдала Кащею свой мухомор с наименьшим числом крапинок, на её мухоморах стало крапинок только в 8 раз больше, чем у Кащея. Докажите, что в начале у Бабы-Яги было не более 23 мухоморов.
При каких значениях <i>a</i> и <i>b</i> выражение <i>p</i> = 2<i>a</i>² − 8<i>ab</i> + 17<i>b</i>² − 16<i>a</i> − 4<i>b</i> + 2044 принимает наименьшее значение? Чему равно это значение?
Двое пишут 2<i>k</i>-значное число, используя цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй. Третью снова первый и т.д. Может ли первый добиться того, чтобы полученное число делилось на 9, если второй хочет этому помешать? Рассмотреть случаи: а) <i>k</i> = 10; б) <i>k</i> = 15.
Решить уравнение [<i>x</i>³] + [<i>x</i>²] + [<i>x</i>] = {<i>x</i>} − 1.
Внутри квадрата со стороной 1 расположены несколько кругов, сумма радиусов которых равна 0,51. Доказать, что найдется прямая, которая параллельна одной из сторон квадрата и пересекает, по крайней мере, 2 круга.
Доказать, что каждое из чисел последовательности 11, 111, 1111, ... не является квадратом натурального числа.
<b>Целое число.</b>Доказать, что если<img align="middle" src="/storage/problem-media/102793/problem_102793_img_2.gif">- целое число, то<img align="middle" src="/storage/problem-media/102793/problem_102793_img_3.gif">- тоже целое число.