Олимпиадные задачи из источника «Книги, журналы» для 6-7 класса - сложность 2-5 с решениями

Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?

Доказать, что остаток от деления простого числа на 30 – простое число или единица.

Путешественник посетил деревню, в котором каждый человек либо всегда говорит правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.

a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.

б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.

Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например,  <sup>49</sup>/<sub>98</sub> = <sup>4</sup>/<sub>8</sub>.  Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".

Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?

Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.

Винни-Пух решил позавтракать. Он налил себе стакан чая и добавил сливок из большого кувшина. Но как только он перемешал сливки и чай, то понял, что хочет пить чай без сливок. Недолго думая, он вылил из стакана в кувшин столько же чая со сливками, сколько сначала взял оттуда сливок. Конечно же, при переливании чай от сливок не отделился, и у Винни-Пуха образовались две смеси чая и сливок – в стакане и в кувшине. Тогда Винни-Пух задумался: чего же получилось больше – чая в кувшине со сливками или сливок в стакане чая? А как думаете вы?

Найдите сумму   1·1! + 2·2! + 3·3! + … + <i>n</i>·<i>n</i>!.

В Волшебной Стране свои волшебные законы природы, один из которых гласит: "Ковёр-самолет будет летать только тогда, когда он имеет прямоугольную форму". У Ивана-царевича был ковёр-самолет размером 9×12. Как-то раз Змей Горыныч подкрался и отрезал от этого ковра маленький коврик размером 1×8. Иван-царевич очень расстроился и хотел было отрезать еще кусочек 1×4, чтобы получился прямоугольник 8×12, но Василиса Премудрая предложила поступить по-другому. Она разрезала ковёр на три части, из которых волшебными нитками сшила квадратный ковёр-самолет размером 10×10. Как Василиса Премудрая переделала испорченный ковер?

В семье шестеро детей. Пятеро из них соответственно на 2, 6, 8, 12 и 14 лет старше младшего, причём возраст каждого ребенка – простое число.

Сколько лет младшему?

Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

В каждой комнате особняка стояли букеты цветов. Всего было 30 букетов роз, 20 – гвоздик и 10 – хризантем, причём, в каждой комнате стоял хотя бы один букет. При этом ровно в двух комнатах стояли одновременно и хризантемы, и гвоздики, ровно в трёх комнатах – и хризантемы, и розы, ровно в четырёх комнатах – и гвоздики, и розы. Могло ли в особняке быть 55 комнат?

  В треугольнике <i>ABC</i> отрезки <i>CM</i> и <i>BN</i> – медианы, <i>P</i> и <i>Q</i> – точки соответственно на <i>AB</i> и <i>AC</i> такие, что биссектриса угла <i>C</i> треугольника одновременно является биссектрисой угла <i>MCP</i>, а биссектриса угла <i>B</i> – биссектрисой угла <i>NBQ</i>. Можно ли утверждать, что треугольник <i>ABC</i> равнобедренный, если

  а)  <i>BP = CQ</i>;

  б)  <i>AP = AQ</i>;

  в)  <i>PQ || BC</i>? 

Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади? (Разрешается сделать конечное число разрезов по прямым линиям и дугам окружностей.)

Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые <i>m</i> мест, но на некоторые места она продала не один билет, и общее число проданных билетов  <i>n > m</i>.  Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу.

а) К любому ли шестизначному числу, начинающемуся с цифры 5, можно приписать еще 6 цифр так, чтобы полученное 12-значное число было полным квадратом?

б) Тот же вопрос про число, начинающееся с 1.

в) Найдите для каждого <i>n</i> такое наименьшее  <i>k = k</i>(<i>n</i>),  что к каждому <i>n</i>-значному числу можно приписать еще <i>k</i> цифр так, чтобы полученное (<i>n+k</i>)-значное число было полным квадратом.

Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.

  а) Нарисуйте такую ломаную, которая имеет наибольшее возможное число точек самопересечения.

  б) Докажите, что большего числа самопересечений такая ломаная не может иметь.

В компанию из <i>n</i> человек пришёл журналист. Ему известно, что в этой компании есть человек <i>Z</i>, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?"

  а) Может ли журналист установить, кто из компании есть <i>Z</i>, задав менее <i>n</i> вопросов?

  б) Найдите наименьшее количество вопросов, достаточное для того, чтобы наверняка найти <i>Z</i>, и докажите, что меньшим числом вопросов обойтись нельзя.

(Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько вопросов.)

На плоскости расположен квадрат и невидимыми чернилами нанесена точка <i>P</i>. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит <i>P</i> (если <i>P</i> лежит на прямой, то он говорит, что <i>P</i> лежит на прямой).

Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка <i>P</i> внутри квадрата?

Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.

Докажите, что для этой цели ему

  а) достаточно четырёх взвешиваний и

  б) недостаточно трёх.

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:  <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

  а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда <i>x</i><sub>1</sub> рационально.

  б) Сколько существует значений <i>x</i><sub>1</sub>, для которых эта последовательность – периодическая с периодом <i>T</i> (для каждого <i>T</i> = 2, 3, ...)?

Через <i>S</i>(<i>n</i>) обозначим сумму цифр числа <i>n</i> (в десятичной записи).

Существуют ли три таких различных натуральных числа <i>m, n</i> и <i>p</i>, что   <i>m + S</i>(<i>m</i>) = <i>n+S</i>(<i>n</i>) = <i>p + S</i>(<i>p</i>)?

В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом <i>A</i> первой строчки пишется число, равное количеству чисел первой строчки, которые больше <i>A</i> и при этом стоят правее <i>A</i>. По второй строчке аналогично строится третья строчка и т. д.

  а) Докажите, что все строчки, начиная с некоторой – нулевые (состоят из сплошных нулей).

  б) Каково максимально возможное число ненулевых строчек (содержащих хотя бы одно число, отличное от нуля)?

Три шахматиста <i>A, B</i> и <i>C</i> сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков <i>A</i> занял первое место, <i>C</i> – последнее, а по числу побед, наоборот, <i>A</i> занял последнее место, <i>C</i> – первое (за победу присуждается одно очко, за ничью – пол-очка)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка