Олимпиадные задачи из источника «Книги, журналы» для 1-10 класса - сложность 3-5 с решениями
Книги, журналы
Все источникиВ сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания.
В параллелограмме <i>ABCD</i>, не являющемся ромбом, проведена биссектриса угла <i>BAD</i>. <i>K</i> и <i>L</i> – точки её пересечения с прямыми <i>BC</i> и <i>CD</i> соответственно. Докажите, что центр окружности, проведённой через точки <i>C</i>, <i>K</i> и <i>L</i>, лежит на окружности, проведённой через точки <i>B</i>, <i>C</i> и <i>D</i>.
Докажите, что следующие свойства тетраэдра равносильны:
-
все грани равновелики;
-
каждое ребро равно противоположному;
-
все грани равны;
-
центры описанной и вписанной сфер совпадают;
-
суммы углов при каждой вершине равны;
-
сумма плоских углов при каждой вершине равна 180<i><sup>o</sup> </i>;
-
развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии;
-
все грани – остроугольные треугольники с одинаковым радиусом описанной окружности;
-
ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник;
-
параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный;
11...
Две окружности пересекаются в точках <i>A</i> и <i>B</i>. Через точку <i>A</i> проведена прямая, вторично пересекающая первую окружность в точке <i>C</i>, а вторую – в точке <i>D</i>. Пусть <i>M</i> и <i>N</i> – середины дуг <i>BC</i> и <i>BD</i>, не содержащих точку <i>A</i>, а <i>K</i> – середина отрезка <i>CD</i>. Докажите, что угол <i>MKN</i> прямой. (Можно считать, что точки <i>C</i> и <i>D</i> лежат по разные стороны от точки <i>A</i>.)
В Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом.
Докажите, что найдутся два комитета, имеющие не менее четырёх общих членов.
Дан выпуклый многоугольник, никакие две стороны которого не параллельны. Для каждой из его сторон рассмотрим угол, под которым она видна из вершины, наиболее удалённой от прямой, содержащей эту сторону. Докажите, что сумма всех таких углов равна 180°.
Докажите, что если числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i> отличны от нуля и для любого целого <i>k</i> = 0, 1, ..., <i>n</i> (<i>n < m</i> – 1) выполняется равенство:
<i>a</i><sub>1</sub> + <i>a</i><sub>2</sub>·2<sup><i>k</i></sup> + <i>a</i><sub>3</sub>·3<sup><i>k</i></sup> + ... + <i>a<sub>m</sub>m<sup>k</sup></i> = 0, то в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i> ...
Существует ли такое конечное множество <i>M</i> ненулевых действительных чисел, что для любого натурального <i>n</i> найдется многочлен степени не меньше <i>n</i> с коэффициентами из множества <i>M</i>, все корни которого действительны и также принадлежат <i>M</i>?
На основании <i>AB</i> равнобедренного треугольника <i>ABC</i> выбрана точка <i>D</i> так, что окружность, вписанная в треугольник <i>BCD</i>, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков <i>CA</i> и <i>CD</i> и отрезка <i>AD</i> (вневписанная окружность треугольника <i>ACD</i>). Докажите, что этот радиус равен одной четверти высоты треугольника <i>ABC</i>, опущенной на его боковую сторону.
Докажите, что из всех треугольников данного периметра 2<i>p</i> равносторонний имеет наибольшую плошадь.
В плоскости выпуклого четырёхугольника <i>ABCD</i> расположена точка <i>P</i>. Проведены биссектрисы <i>PK,PL, PM</i> и <i>PN</i> треугольников <i>APB, BPC, CPD</i> и <i>DPA</i> соответственно.
а) Найдите хотя бы одну такую точку <i>P</i>, для которой четырёхугольник <i>KLMN</i> – параллелограмм.
б) Найдите все такие точки.
Хорды <i>AC</i> и <i>BD</i> окружности с центром <i>O</i> пересекаются в точке <i>K</i>. Пусть <i>M</i> и <i>N</i> – центры описанных окружностей треугольников <i>AKB</i> и <i>CKD</i> соответственно. Докажите, что <i>OM = KN</i>.
Точка <i>P</i> лежит внутри равнобедренного треугольника <i>ABC</i> (<i>AB = BC </i>), причём ∠<i>ABC</i> = 80°, ∠<i>PAC</i> = 40°, ∠<i>ACP</i> = 30°. Найдите угол <i>BPC</i>.
В трапеции <i>ABCD AB</i> – основание, <i>AC = BC</i>, <i>H</i> – середина <i>AB</i>. Пусть <i>l</i> – прямая, проходящая через точку <i>H</i> и пересекающая прямые <i>AD</i> и <i>BD</i> в точках <i>P</i> и <i>Q</i> соответственно. Докажите, что либо углы <i>ACP</i> и <i>QCB</i> равны, либо их сумма равна 180°.
Если повернуть квадрат вокруг его центра на 45°, то стороны повёрнутого квадрата разобьют каждую сторону первоначального отрезка на три отрезка, длины которых относятся как <i>a</i> : <i>b</i> : <i>a</i> (эти отношения легко вычислить). Для произвольного выпуклого четырёхугольника сделаем аналогичное построение: разобьём каждую его сторону в тех же отношениях <i>a</i> : <i>b</i> : <i>a</i> и проведём прямую через каждые две точки деления, соседние с вершиной (лежащие на сходящейся к ней стороне). Докажите, что площадь четырёхугольника, ограниченного четырьмя построенными прямыми, равна площади исходного четырёхугольника.
Пусть <i>M</i> – внутренняя точка прямоугольника <i>ABCD</i>, а <i>S</i> – его площадь. Докажите, что <i>S ≤ AM·CM + BM·DM</i>.
На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.
В углу шахматной доски размером <i>m×n</i> полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.
б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.
Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.
Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...
Существует ли такой многочлен <i>P</i>(<i>x</i>), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (<i>P</i>(<i>x</i>))<sup><i>n</i></sup>, <i>n</i> > 1, положительны?
Рассматривается произвольный многоугольник (не обязательно выпуклый).
а) Всегда ли найдётся хорда многоугольника, которая делит его на две равновеликие части?
б) Докажите, что любой многоугольник можно разделить некоторой хордой на части, площадь каждой из которых не меньше чем ⅓ площади многоугольника. (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур.)
В квадрате клетчатой бумаги 10×10 нужно расставить один корабль 1×4, два – 1×3, три – 1×2 и четыре – 1×1. Корабли не должны иметь общих точек (даже вершин) друг с другом, но могут прилегать к границам квадрата. Докажите, что
а) если расставлять их в указанном выше порядке (начиная с больших), то этот процесс всегда удается довести до конца, даже если в каждый момент заботиться только об очередном корабле, не думая о будущих;
б) если расставлять их в обратном порядке (начиная с малых), то может возникнуть ситуация, когда очередной корабль поставить нельзя.
Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при вычеркивании одной (не первой) цифры уменьшается в целое число раз.