Олимпиадные задачи из источника «Журнал "Квант"» для 5-7 класса - сложность 4-5 с решениями
Журнал "Квант"
НазадДля каких <i>n</i> существует такая замкнутая несамопересекающаяся ломаная из <i>n</i> звеньев, что каждая прямая, содержащая одно из звеньев этой ломаной, содержит ещё хотя бы одно её звено?
а) Школьники одного класса в сентябре ходили в два туристических похода. В первом походе мальчиков было меньше ⅖ общего числа участников этого похода, во втором – тоже меньше ⅖. Докажите, что в этом классе мальчики составляют меньше <sup>4</sup>/<sub>7</sub> общего числа учеников, если известно, что каждый из учеников участвовал по крайней мере в одном походе. б) Пусть в <i>k</i>-м походе, где 1 ≤ <i>k ≤ n</i>, мальчики составляли α<sub><i>k</i></sub>-ю часть общего количества участников этого похода. Какую наибольшую долю могут составлять мальчики на общей встрече всех туристов (всех, кто участвовал хотя бы в одном из <i>n</i> походов)?
Можно ли расставить цифры 0, 1 и 2 в клетках листа клетчатой бумаги размером 100×100 таким образом, чтобы в каждом прямоугольнике размером 3×4, стороны которого идут по сторонам клеток, оказалось бы три нуля, четыре единицы и пять двоек?
Треугольная таблица строится по следующему правилу: в верхней её строке написано одно только натуральное число<nobr><i>a</i> > 1,</nobr>а далее под каждым<nobr>числом <i>k</i></nobr>слева пишем число<i>k</i><sup>2</sup>, а<nobr>справа —</nobr>число<nobr><i>k</i> + 1.</nobr>Докажите, что в каждой строке таблицы все числа разные.Например, при <nobr><i>a</i> = 2</nobr> вторая строка состоит из чисел 4 <nobr>и 3,</nobr> <nobr>третья —</nobr> из чисел 16, 5, 9 <nobr>и 4, </nobr> <nobr>четвёртая —</nobr> из чисел 256, 17, 25, 6, 81, 10, 16 <nobr>и 5.</nobr>
По окружности выписаны <i>n</i> чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub><i>n</i></sub>, каждое из которых равно 1 или –1, причём сумма произведений соседних чисел равна нулю и вообще для каждого <i>k</i> = 1, 2, ..., <i>n</i> – 1 сумма <i>n</i> произведений чисел, отстоящих друг от друга на <i>k</i> мест, равна нулю
(то есть <i>x</i><sub>1</sub><i>x</i><sub>2</sub> + <i>x</i><sub>2</sub><i>x</i><sub>3</sub> + ... + <i>x<sub>n</sub>x</i><sub>1</sub> = 0, <i>x</i><sub>...
Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а...
Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.
<img src="/storage/problem-media/73554/problem_73554_img_2.gif" width="172" height="69" vspace="10" hspace="20" align="right">В бесконечной цепочке нервных клеток каждая может находиться в одном из двух состояний: «покой» и «возбуждение». Если в данный момент клетка возбудилась, то она посылает сигнал, который через единицу времени (скажем, через одну миллисекунду) доходит до обеих соседних с ней клеток. Каждая клетка возбуждается в том и только в том случае, если к ней приходит сигнал от одной из соседних клеток; если сигналы приходят одновременно с двух сторон, то они погашаются, и клетка не возбуждается. Например, если в начальной момент времени<nobr><i>t</i> = 0</nobr>возбудить три соседние клетки...