Олимпиадные задачи из источника «параграф 3. Примеры и контрпримеры»

Арена цирка освещается <i>n</i> различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких <i>n</i> это возможно?

Обязательно ли треугольник равнобедренный, если центр его вписанной окружности одинаково удален от середин двух сторон?

На плоскости расположено несколько непересекающихся отрезков. Всегда ли можно соединить концы некоторых из них отрезками так, чтобы получилась замкнутая несамопересекающаяся ломаная?

Может ли конечный набор точек содержать для каждой своей точки ровно 100 точек, удаленных от нее на расстояние 1?

На бесконечном листе клетчатой бумаги (размер клетки 1×1) укладываются кости домино размером 1×2 так, что они накрывают все клетки. Можно ли при этом добиться того, чтобы любая прямая, идущая по линиям сетки, разрезала лишь конечное число костей?

В остроугольном треугольнике<i>ABC</i>проведены медиана<i>AM</i>, биссектриса<i>BK</i>и высота<i>CH</i>. Может ли площадь треугольника, образованного точками пересечения этих отрезков, быть больше0, 499<i>S</i><sub>ABC</sub>?

Существуют ли на плоскости три такие точки <i>A</i>,<i>B</i>и <i>C</i>, что для любой точки <i>X</i>длина хотя бы одного из отрезков<i>XA</i>,<i>XB</i>и <i>XC</i>иррациональна?

Пусть<i>n</i>$\ge$3. Существуют ли <i>n</i>точек, не лежащих на одной прямой, попарные расстояния между которыми иррациональны, а площади всех треугольников с вершинами в них рациональны?

Список упорядоченных в порядке возрастания длин сторон и диагоналей одного выпуклого четырехугольника совпадает с таким же списком для другого четырехугольника. Обязательно ли эти четырехугольники равны?

В выпуклом четырехугольнике<i>ABCD</i>равны стороны<i>AB</i>и <i>CD</i>и углы <i>A</i>и <i>C</i>. Обязательно ли этот четырехугольник параллелограмм?

Существует ли треугольник, у которого все высоты меньше 1 см, а площадь больше 1 м<sup>2</sup>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка