Олимпиадные задачи из источника «Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел» для 6-7 класса - сложность 2 с решениями
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
НазадДоказать, что остаток от деления простого числа на 30 – простое число или единица.
Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например, <sup>49</sup>/<sub>98</sub> = <sup>4</sup>/<sub>8</sub>. Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".
Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Найдите сумму 1·1! + 2·2! + 3·3! + … + <i>n</i>·<i>n</i>!.
Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?
Доказать: число делителей <i>n</i> не превосходит 2<img width="27" height="33" align="MIDDLE" border="0" src="/storage/problem-media/78208/problem_78208_img_2.gif">.
Упростите выражение (избавьтесь от как можно большего количества знаков корней): <img align="absmiddle" src="/storage/problem-media/64993/problem_64993_img_2.gif"> .
Обозначим через<i>S</i>сумму следующего ряда:<div align="CENTER"> <!-- MATH \begin{equation} S=1-1+1-1+1-\ldots \end{equation} --> <table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"> <td nowrap align="CENTER"><i>S</i> = 1 - 1 + 1 - 1 + 1 -...</td> <td nowrap width="10" align="RIGHT"> (12.1)</td></tr> </table></div><br clear="ALL">Преобразовав равенство (<a href="https://mirolimp.ru/tasks/161543">12.1</a>), можно получить уравнение, из которого находится<i>S</i>:<div align="CENTER"> <i>S</i> = 1 - (1 - 1 + 1 - 1 +...) = 1 -...
<b>``65 = 64 = 63''.</b>Тождество Кассини лежит в основе одного геометрического парадокса. Он заключается в том, что можно взять шахматную доску, разрезать ее на четыре части, как показано ниже, а затем составить из этих же частей прямоугольник:
<img width="131" height="131" align="BOTTOM" border="0" src="/storage/problem-media/61541/problem_61541_img_2.gif" alt="\begin{picture} (80,80)\multiput(0,0)(0,10){9}{\line(1,0){80}} \multiput(0,0)(... ...(0,1){80}} \put(0,50){\line(1,0){80}}\qbezier(50,0)(40,25)(30,50) \end{picture}">
<img width="211" height="83" align="BOTTOM" border="0" src="/storage/problem-media/61541/problem_61541_img_3.gi...
Восстановите алфавит племени Мумбо-Юмбо из задачи <a href="https://mirolimp.ru/tasks/160340">2.6</a>.
Иногда, вычитая дроби, можно вычитать их числители и складывать знаменатели. Например: <img align="absMIDDLE" src="/storage/problem-media/61530/problem_61530_img_2.gif">
Для каких дробей это возможно?
За круглым столом сидят 4 гнома. Перед каждым стоит кружка с молоком. Один из гномов переливает ¼ своего молока соседу справа. Затем сосед справа делает то же самое. Затем то же самое делает следующий сосед справа и наконец четвёртый гном ¼ оказавшегося у него молока наливает первому. Во всех кружках вместе молока 2 л. Сколько молока было первоначально в кружках, если
а) в конце у всех гномов молока оказалось поровну?
б) в конце у всех гномов оказалось молока столько, сколько было в начале?
Коля Васин гулял после школы пять часов. Сначала он шёл по горизонтальной дороге, затем поднялся в гору и, наконец, по старому маршруту возвратился назад в исходный пункт. Его скорость была 4 км/ч на горизонтальном участке пути, 3 км/ч при подъеме в гору и 6 км/ч – при спуске с горы. Какое расстояние прошёл Коля Васин?
Сколько представлений допускает дробь <img width="67" height="49" align="MIDDLE" border="0" src="/storage/problem-media/60999/problem_60999_img_2.gif"> в виде суммы двух положительных дробей со знаменателями <i>n</i> и <i>n</i> + 1?
Докажите, что многочлен <i>a</i>³(<i>b</i>² – <i>c</i>²) + <i>b</i>³(<i>c</i>² – <i>a</i>²) + <i>c</i>³(<i>a</i>² – <i>b</i>²) делится на (<i>b – c</i>)(<i>c – a</i>)(<i>a – b</i>).
<b>4 монеты.</b>Из четырех монет одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за два взвешивания на двухчашечных весах без гирь найти фальшивую монету.
а) У одного человека был подвал, освещавшийся тремя электрическими лампочками. Выключатели этих лампочек находились вне подвала, так что включив любой из выключателей, хозяин должен был спуститься в подвал, чтобы увидеть, какая именно лампочка зажглась. Однажды он придумал способ, как определить для каждого выключателя, какую именно лампочку он включает, сходив в подвал ровно один раз. Какой это способ? б) Сколько лампочек и выключателей можно идентифицировать друг с другом, если разрешается 2 раза спуститься в подвал?
а) Имеются две веревки. Если любую из них поджечь с одного конца, то она сгорит за час. Веревки горят неравномерно. Например, нельзя гарантировать, что половина веревки сгорает за 30 минут. Как, имея две такие веревки, отмерить промежуток времени в 15 минут? б) Сколько промежутков времени (считая нулевой) можно отмерить, имея три такие веревки?
Вы имеете право сделать 4 гири любого веса. Какие это должны быть гири, чтобы на весах из предыдущей задачи можно было взвесить грузы от 1 до 40 кг?
Дан мешок сахарного песка, чашечные весы и гирька в 1 г. Можно ли за 10 взвешиваний отмерить 1 кг сахара?
Как связаны между собой десятичные представления чисел <img align="absMIDDLE" src="/storage/problem-media/60878/problem_60878_img_2.gif"> и <img align="absMIDDLE" src="/storage/problem-media/60878/problem_60878_img_3.gif"> ?
Пусть число α задаётся десятичной дробью
а) 0,101001000100001000001...;
б) 0,123456789101112131415....
Будет ли это число рациональным?
Представьте следующие числа в виде обычных и в виде десятичных дробей:
а) 0,(12) + 0,(122); б) 0,(3)·0,(4); в) 0,(9) – 0,(85).
На столе лежат книги, которые надо упаковать. Если их связать в одинаковые пачки по 4, по 5 или по 6 книг, то каждый раз останется одна лишняя книга, а если связать по 7 книг в пачку, то лишних книг не останется. Какое наименьшее количество книг может быть на столе?
Найдите наименьшее натуральное число, дающее при делении на 2, 3, 5, 7 остатки 1, 2, 4, 6 соответственно.