Олимпиадные задачи по теме «Вероятность и статистика» для 11 класса - сложность 1-2 с решениями
Вероятность и статистика
Все категорииСогласно одной неправдоподобной легенде, Коши и Буняковский очень любили по вечерам играть в дартс. Но мишень у них была необычная – секторы на ней были неравные, так что вероятности попасть в разные секторы были не одинаковы. Однажды Коши бросил дротик и попал в мишень. Следующим бросает Буняковский. Что более вероятно: что Буняковский попадёт в тот же сектор, в который попал Коши, или что он попадёт в следующий сектор по часовой стрелке? <div align="center"><img src="/storage/problem-media/66057/problem_66057_img_2.gif"></div>
Имеется <i>n</i> случайных векторов вида (<i>y</i><sub>1</sub>, <i>y</i><sub>2</sub>, <i>y</i><sub>3</sub>), где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор <i><b>a</b></i> с координатами (<i>Y</i><sub>1</sub>, <i>Y</i><sub>2</sub>, <i>Y</i><sub>3</sub>).
а) Найдите математическое ожидание случайной величины <i><b>a</b></i>².
б) Докажите, что <img align="absmiddle" src="/storage/problem-media/66053/problem_66053_img_2.gif">
Игральный кубик симметричен, но устроен необычно: на двух гранях по два очка, а на остальных четырёх – по одному. Сергей бросил кубик несколько раз, и в результате сумма всех выпавших очков оказалась 3. Найдите вероятность того, что при каком-то броске выпала грань с 2 очками.
Билет на электричку стоит 50 рублей, а штраф за безбилетный проезд – 450 рублей. Если безбилетник (заяц) попадается контролёру, то оплачивает и штраф, и стоимость билета. Известно, что контролёр встречается в среднем один раз на 10 поездок. Заяц ознакомился с основами теории вероятностей и решил придерживаться стратегии, которая делает математическое ожидание расходов наименьшим возможным. Как ему поступать: покупать билет каждый раз, не покупать никогда или бросать монетку – покупать билет или нет?
Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой.
Дана таблица 3×3 (как для игры в крестики-нолики). В четыре случайно выбранные ячейки случайным образом поставили четыре фишки.
Найдите вероятность того, что среди этих четырёх фишек найдутся три, которые стоят в один ряд по вертикали, по горизонтали или по диагонали.
На конференцию приехали 18 учёных, из которых ровно 10 знают сногсшибательную новость. Во время перерыва (кофе-брейка) все учёные разбиваются на случайные пары, и в каждой паре каждый, кто знает новость, рассказывает эту новость другому, если тот её ещё не знал.
а) Найдите вероятность того, что после кофе-брейка число учёных, знающих новость, будет равно 13.
б) Найдите вероятность того, что после кофе-брейка число учёных, знающих новость, будет равно 14.
в) Обозначим буквой <i>X</i> количество учёных, которые знают сногсшибательную новость после кофе-брейка. Найдите математическое ожидание <i>X</i>.
На знакомом нам заводе вырезают металлические диски диаметром 1 м. Известно, что диск диаметром ровно 1 м весит ровно 100 кг. При изготовлении возникает ошибка измерения, и поэтому стандартное отклонение радиуса составляет 10 мм. Инженер Сидоров считает, что стопка из 100 дисков в среднем будет весить 10000 кг. На сколько ошибается инженер Сидоров?
В треугольнике <i>ABC</i> угол <i>A</i> равен 40°. Треугольник случайным образом бросают на стол.
Найдите вероятность того, что вершина <i>A</i> окажется восточнее двух других вершин.
К юбилею Санкт-Петербургских математических олимпиад монетный двор отчеканил три юбилейные монеты. Одна монета получилась правильно, у второй монеты на обеих сторонах оказалось два орла, а у третьей обе стороны – решки. Директор монетного двора не глядя выбрал одну из этих трёх монет и бросил её наудачу. Выпал орёл. Чему равна вероятность того, что на второй стороне этой монеты тоже орёл?
Василий Петров выполняет задание по английскому языку. В этом задании есть 10 английских выражений и их переводы на русский в случайном порядке. Нужно установить верные соответствия между выражениями и их переводами. За каждое правильно установленное соответствие даётся 1 балл. Таким образом, можно получить от 0 до 10 баллов. Вася ничего не знает, поэтому выбирает варианты наугад. Найдите вероятность того, что он получит ровно 9 баллов.
Вероятность рождения двойняшек в Швамбрании равна <i>p</i>, тройняшки в Швамбрании не рождаются.
а) Оцените вероятность того, что встреченный на улице швамбранец – один из пары двойняшек?
б) В некоторой швамбранской семье трое детей. Какова вероятность того, что среди них есть пара двойняшек?
в) В школах швамбранских двойняшек обязательно зачисляют в один класс. Всего в Швамбрании <i>N</i> первоклассников.
Каково матожидание числа пар двойняшек среди них?
Будем считать, что рождение девочки и мальчика равновероятны. Известно, что в некоторой семье двое детей.
а) Какова вероятность того, что из них один мальчик и одна девочка?
б) Дополнительно известно, что один из детей – мальчик. Какова теперь вероятность того, что в семье один мальчик и одна девочка?
в) Дополнительно известно, что мальчик родился в понедельник. Какова теперь вероятность того, что в семье один мальчик и одна девочка?
Точка выходит из начала координат на прямой и делает <i>a</i> шагов на единицу вправо, <i>b</i> шагов на единицу влево в каком-то порядке, причём <i>a > b</i>. Размахом блуждания точки назовём разность между наибольшей и наименьшей координатами точки за всё время блуждания.
а) Найдите наибольший возможный размах блуждания.
б) Найдите наименьший возможный размах.
в) Сколько существует различных последовательностей движения точки, при которых размах блуждания будет наибольшим возможным?
Петр Иванович, еще 49 мужчин и 50 женщин в случайном порядке рассаживаются вокруг круглого стола. Назовём мужчину довольным, если рядом с ним сидит женщина. Найдите:
а) вероятность того, что Петр Иванович доволен;
б) математическое ожидание числа довольных мужчин.
У Алисы в кармане шесть волшебных пирожков – два увеличивающих (съешь – вырастешь), а остальные уменьшающие (съешь – уменьшишься). Когда Алиса встретила Мэри Энн, она, не глядя, вынула из кармана три пирожка и отдала их Мэри. Найдите вероятность того, что у одной из девочек нет ни одного увеличивающего пирожка.
Вася написал на листке бумаги записку, сложил её вчетверо, надписал сверху "МАМЕ" (см. фото). Затем он развернул записку, дописал ещё кое-что, опять сложил записку по линиям сгиба случайным образом (не обязательно, как раньше) и оставил на столе, положив случайной стороной вверх. Найдите вероятность того, что надпись "МАМЕ" по-прежнему сверху. <div align="center"><img src="/storage/problem-media/65331/problem_65331_img_2.png"></div>
В наборе –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5 замените одно число двумя другими целыми числами так, чтобы дисперсия набора и его среднее не изменились.
Знатоки и Телезрители играют в "Что? Где? Когда" до шести побед – кто первый выиграл шесть раундов, тот и победил в игре. Вероятность выигрыша Знатоков в одном раунде равна 0,6, ничьих не бывает. Сейчас Знатоки проигрывают со счетом 3 : 4. Найдите вероятность того, что Знатоки все же выиграют.
В числовом наборе <i>n</i> чисел, причём одно из чисел равно 0, а другое равно 1.
а) Какова наименьшая возможная дисперсия такого набора чисел?
б) Каким для этого должен быть набор?
Муха ползёт из начала координат. При этом муха двигается только по линиям целочисленной сетки вправо или вверх (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо. Найдите вероятность того, что в какой-то момент:
а) муха окажется в точке (8, 10);
б) муха окажется в точке (8, 10), по дороге пройдя по отрезку, соединяющему точки (5,6) и (6. 6);
в) муха окажется в точке (8, 10), пройдя внутри круга радиуса 3 с центром в точке (4, 5). <div align="center"><img align="middle" src="/storage/problem-media/65317/problem_65317_img_2.png"></div>
Рассеянный Ученый сконструировал прибор, состоящий из датчика и передатчика. Средний срок (математическое ожидание) службы датчика 3 года, средний срок службы передатчика 5 лет. Зная распределения срока службы датчика и передатчика, Рассеянный Ученый вычислил, что средний срок службы всего прибора равен 3 года 8 месяцев. Не ошибся ли Рассеянный Ученый в своих расчетах?
40% приверженцев некоторой политической партии являются женщинами. 70% приверженцев этой партии – городские жители. При этом 60% горожан, поддерживающих партию, – мужчины. Являются ли независимыми события "приверженец партии – горожанин" и "приверженец партии – женщина"?
Митя собирается согнуть квадратный лист бумаги <i>ABCD</i>. Митя называет сгиб <i>красивым</i>, если сторона <i>AB</i> пересекает сторону <i>CD</i> и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку <i>F</i>. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку <i>F</i>.
В городе, где живет Рассеянный Ученый, телефонные номера состоят из 7 цифр. Ученый легко запоминает телефонный номер, если этот номер палиндром, то есть он одинаково читается слева направо и справа налево. Например, номер 4435344 Ученый запоминает легко, потому что этот номер палиндром. А номер 3723627 не палиндром, поэтому Ученый такой номер запоминает с трудом. Найдите вероятность того, что телефонный номер нового случайного знакомого Ученый запомнит легко.