Назад
Задача

В наборе  –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5  замените одно число двумя другими целыми числами так, чтобы дисперсия набора и его среднее не изменились.

Решение

  Как известно, дисперсия набора равна разности среднего квадрата и квадрата среднего. Поэтому задачу можно переформулировать: нужно заменить одно число двумя другими так, чтобы среднее арифметическое и средний квадрат чисел в наборе не изменились. Среднее арифметическое данного набора равно 0, поэтому среднее арифметическое нового набора, а, следовательно, и сумма чисел в нём также должна быть равна 0.

  В данном наборе 11 чисел, а сумма квадратов равна  2·(1² + 2² + 3² + 4² + 5²) = 110,  так что средний квадрат равен 10. В новом наборе 12 чисел, поэтому сумма квадратов чисел нового набора должна быть 120, то есть увеличивается на 10. Заменим число a числами b и c. Тогда  a = b + c  и

a² + 10 = b² + c².  Следовательно,  b² + c² – 10 = (b + c)² = b² + c² + 2bc,  откуда  bc = –5.

  Значит, одно из чисел равно 5 или –5, а другое, соответственно, –1 или 1. В первом случае  a = 4,  во втором случае  a = –4.

Ответ

Надо заменить –4 на 1 и –5 или заменить 4 на –1 и 5.

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет