Олимпиадные задачи по теме «Принцип крайнего» для 3-7 класса - сложность 1-2 с решениями

Пятизначное число называется <i>неразложимым</i>, если оно не раскладывается в произведение двух трёхзначных чисел.

Какое наибольшее количество неразложимых пятизначных чисел может идти подряд?

Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

Зайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить?

На доске записано произведение <i>a</i><sub>1</sub><i>a</i><sub>2</sub>... <i>a</i><sub>100</sub>, где <i>a</i><sub>1</sub>, ..., <i>a</i><sub>100</sub> – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>100</sub> могло быть?

Докажите, что числа от 1 до 16 можно записать в строку, но нельзя записать по кругу так, чтобы сумма любых двух соседних чисел была квадратом натурального числа.

Докажите, что если для чисел<i>a</i>,<i>b</i>и<i>c</i>выполняются неравенства|<i>a</i>-<i>b</i>|$\ge$|<i>c</i>|,|<i>b</i>-<i>c</i>|$\ge$|<i>a</i>|,|<i>c</i>-<i>a</i>|$\ge$|<i>b</i>|, то одно из этих чисел равно сумме двух других.

У Коли есть отрезок длины<i>k</i>, а у Лёвы — отрезок длины <i>l</i>. Сначала Коля делит свой отрезок на три части, а потом Лёва делит на три части свой отрезок. Если из получившихся шести отрезков можно сложить два треугольника, то выигрывает Лёва, а если нет — Коля. Кто из играющих, в зависимости от отношения<i>k</i>/<i>l</i>, может обеспечить себе победу, и как ему следует играть?

Имеется 10 отрезков, причём известно, что длина каждого – целое число сантиметров. Два самых коротких отрезка – по сантиметру, самый длинный – 50 см. Докажите, что среди отрезков найдутся три, из которых можно составить треугольник.

Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?

Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?

В круге провели несколько (конечное число) различных хорд так, что каждая из них проходит через середину какой – либо другой из проведённых хорд. Докажите, что все эти хорды являются диаметрами круга.

Покажите как любой четырехугольник разрезать на три трапеции (параллелограмм тоже можно считать трапецией).

Фигура на рисунке составлена из квадратов. Найдите сторону левого нижнего, если сторона самого маленького равна 1.<img src="/storage/problem-media/103796/problem_103796_img_2.gif">

Прямоугольник составлен из шести квадратов (см. правый рисунок). Найдите сторону самого большого квадрата, если сторона самого маленького равна 1.<img src="/storage/problem-media/103790/problem_103790_img_2.gif">

В одной из школ 20 раз проводился кружок по астрономии. На каждом занятии присутствовало ровно пять школьников, причём никакие два школьника не встречались на кружке более одного раза. Докажите, что всего на кружке побывало не менее 20 школьников.

Имеются два сосуда емкостью 1 л и 2 л. Из содержимого приготовили 0,5 л смеси, содержащей 40% яблочного сока, и 2,5 л смеси, содержащей 88% яблочного сока. Каково процентное содержание яблочного сока в сосудах?

Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков разрезать на две части и разложить сыр в два пакета так, что части разрезанного куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково?

Девять цифр: 1, 2, 3, ..., 9 выписаны в некотором порядке (так что получилось девятизначное число). Рассмотрим все тройки цифр, идущих подряд, и найдём сумму соответствующих семи трёхзначных чисел. Каково наибольшее возможное значение этой суммы?

Каждый из 450 депутатов парламента дал пощёчину ровно одному своему коллеге.

Докажите, что можно избрать парламентскую комиссию из 150 человек, среди членов которой никто никого не бил.

Петя хочет изготовить необычную игральную кость, которая, как обычно, должна иметь форму куба, на гранях которого нарисованы точки (на разных гранях разное число точек), но при этом на каждых двух соседних гранях число точек должно различаться по крайней мере на два (при этом разрешается, чтобы на некоторых гранях оказалось больше шести точек). Сколько всего точек необходимо для этого нарисовать?

Числа 1, 2, 3, ..., 25 расставляют в таблицу  5&times5  так, чтобы в каждой строке числа были расположены в порядке возрастания.

Какое наибольшее и какое наименьшее значение может иметь сумма чисел в третьем столбце?

По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел

равна 1. Найти эти числа.

В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона. Какое наибольшее число баронов могло быть при этих условиях?

(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)

Рассматривается конечное множество <i>M</i> единичных квадратов на плоскости. Их стороны параллельны осям координат (разрешается, чтобы квадраты пересекались). Известно, что для любой пары квадратов расстояние между их центрами не больше 2. Докажите, что существует единичный квадрат (не обязательно из множества <i>M</i>) со сторонами, параллельными осям, пересекающийся хотя бы по точке с каждым квадратом множества <i>M</i>.

В клетках доски  <i>n×n</i>  произвольно расставлены числа от 1 до <i>n</i>². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  <i>n</i> + 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка