Олимпиадные задачи по теме «Функции одной переменной. Непрерывность» для 9 класса - сложность 2-5 с решениями

Пусть  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub><i>n</i></sub>  – некоторые числа, принадлежащие отрезку  [0, 1].

Докажите, что на этом отрезке найдется такое число <i>x</i>, что   <sup>1</sup>/<sub><i>n</i></sub> (|<i>x – x</i><sub>1</sub>| + |<i>x – x</i><sub>2</sub>| + ... + |<i>x – x<sub>n</sub></i>|)  = ½.

На доске написаны девять приведённых квадратных трёхчленов:  <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>,  <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>,  ...,  <i>x</i>² + <i>a</i><sub>9</sub><i>x + b</i><sub>9</sub>. Известно, что последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>9</sub>  и  <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b</i><sub>9</sub>  – арифметические прогрессии. Оказалось, что сумма все...

Ненулевые числа <i>a</i>, <i>b</i>, <i>c</i> таковы, что каждые два из трёх уравнений  <i>ax</i><sup>11</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0,  <i>bx</i><sup>11</sup> + <i>cx</i><sup>4</sup> + <i>a</i> = 0,  <i>cx</i><sup>11</sup> + <i>ax</i><sup>4</sup> + <i>b</i> = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Функция <i>f</i>(<i>x</i>) определена на положительной полуоси и принимает только положительные значения. Известно, что  <i>f</i>(1) + <i>f</i>(2) = 10  и  <img align="absmiddle" src="/storage/problem-media/116433/problem_116433_img_2.gif">  при любых <i>а</i> и <i>b</i>. Найдите <i>f</i>(2<sup>2011</sup>).

Функция  <i>f</i>(<i>x</i>) определена для всех <i>x</i>, кроме 1, и удовлетворяет равенству:  <img align="absmiddle" src="/storage/problem-media/116003/problem_116003_img_2.gif">.  Найдите  <i>f</i>(–1).

Дан квадратный трёхчлен  <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>.  Известно, что для любого вещественного <i>x</i> существует такое вещественное <i>y</i>, что   <i>f</i>(<i>y</i>) = <i>f</i>(<i>x</i>) + <i>y</i>.  Найдите наибольшее возможное значение <i>a</i>.

Докажите, что для каждого<i> x </i>такого, что<i> sin x<img src="/storage/problem-media/110210/problem_110210_img_2.gif"> </i>0, найдется такое натуральное<i> n </i>, что<i> | sin nx| <img src="/storage/problem-media/110210/problem_110210_img_3.gif"> <img src="/storage/problem-media/110210/problem_110210_img_4.gif"> </i>.

Функции  <i>f</i>(<i>x</i>) – <i>x</i>  и  <i>f</i>(<i>x</i>²) – <i>x</i><sup>6</sup>  определены при всех положительных <i>x</i> и возрастают.

Докажите, что функция   <img align="absmiddle" src="/storage/problem-media/110122/problem_110122_img_2.gif">   также возрастает при всех положительных <i>x</i>.

Существует ли ограниченная функция<i> f </i>:<i> <img src="/storage/problem-media/109819/problem_109819_img_2.gif"><img src="/storage/problem-media/109819/problem_109819_img_3.gif"><img src="/storage/problem-media/109819/problem_109819_img_2.gif"> </i>такая, что<i> f</i>(1)<i>></i>0и<i> f</i>(<i>x</i>)удовлетворяет при всех<i> x,y<img src="/storage/problem-media/109819/problem_109819_img_4.gif"><img src="/storage/problem-media/109819/problem_109819_img_2.gif"> </i>неравенству <center><i>

f<sup>2</sup></i>(<i>x+y</i>)<i><img src="/storage/problem-media/109819/problem_109...

Найдите все функции<i> f </i>:<i> <img src="/storage/problem-media/109707/problem_109707_img_2.gif"><img src="/storage/problem-media/109707/problem_109707_img_3.gif"><img src="/storage/problem-media/109707/problem_109707_img_2.gif"> </i>, которые для всех<i> x,y,z<img src="/storage/problem-media/109707/problem_109707_img_4.gif"><img src="/storage/problem-media/109707/problem_109707_img_2.gif"> </i>удовлетворяют неравенству<i> f</i>(<i>x+y</i>)<i>+f</i>(<i>y+z</i>)<i>+f</i>(<i>z+x</i>)<i><img src="/storage/problem-media/109707/problem_109707_img_5.gif"> </i>3<i>f</i&gt...

Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.

Функция<i> f</i>(<i>x</i>)определена и удовлетворяет соотношению <center>(<i>x-</i>1)<i>f</i>(<i><img src="/storage/problem-media/109577/problem_109577_img_2.gif"></i>)<i>-f</i>(<i>x</i>)<i>=x

</i></center> при всех<i> x<img src="/storage/problem-media/109577/problem_109577_img_3.gif"></i>1. Найдите все такие функции.

Докажите, что если(<i>x+<img src="/storage/problem-media/109565/problem_109565_img_2.gif"></i>)(<i>y+<img src="/storage/problem-media/109565/problem_109565_img_3.gif"></i>)<i>=</i>1, то<i> x+y=</i>0.

На доске написано:  <i>x</i>³ + ...<i>x</i>² + ...<i>x</i> + ... = 0.  Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?

Функция<i> f </i>такова, что для любых положительных<i> x </i>и<i> y </i>выполняется равенство<i> f</i>(<i>xy</i>)<i> = f</i>(<i>x</i>)<i> + f</i>(<i>y</i>). Найдите<i> f</i>(2007), если<i> f</i>(<i><img src="/storage/problem-media/109438/problem_109438_img_2.gif"></i>)<i> = </i>1.

<i>x</i><sub>1</sub> – вещественный корень уравнения  <i>x</i>² + <i>ax + b</i> = 0,  <i>x</i><sub>2</sub> – вещественный корень уравнения  <i>x</i>² – <i>ax – b</i> = 0.

Доказать, что уравнение  <i>x</i>² + 2<i>ax</i> + 2<i>b</i> = 0  имеет вещественный корень, заключённый между <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>.  (<i>a</i> и <i>b</i> – вещественные числа).

а) Известно, что область определения функции  <i>f</i>(<i>x</i>)  – отрезок  [–1, 1]  и  <i>f</i>(<i>f</i>(<i>x</i>)) = – <i>x</i>  при всех <i>x</i>, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции <i>f</i>(<i>x</i>). б) Можно ли это сделать, если область определения функции – интервал  (–1, 1)?  Вся числовая ось?

Дан многочлен <i>P</i>(<i>x</i>) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...,  такая, что  <i>P</i>(<i>a</i><sub>1</sub>) = 0,  <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>,  <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub>  и т. д. Докажите, что не все числа в последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...  различны.

Пусть <i>P</i>(<i>x</i>) – многочлен со старшим коэффициентом 1, а последовательность целых чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...  такова, что  <i>P</i>(<i>a</i><sub>1</sub>)= 0,  <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>,  <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub>  и т. д. Числа в последовательности не повторяются. Какую степень может иметь <i>P</i>(<i>x</i>)?

У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?

В Монголии имеются в обращении монеты в 3 и 5 тугриков. Входной билет в центральный парк стоит 4 тугрика. Как-то раз перед открытием в кассу парка выстроилась очередь из 200 посетителей. У каждого из них, а также у кассира есть ровно 22 тугрика. Докажите, что все посетители смогут купить билет в порядке очереди.

Существуют ли такие две функции  <i>f</i> и <i>g</i>, принимающие только целые значения, что для любого целого <i>x</i> выполнены соотношения:

  а)  <i>f</i>(<i>f</i>(<i>x</i>)) = <i>x,  g</i>(<i>g</i>(<i>x</i>)) = <i>x,   f</i>(<i>g</i>(<i>x</i>)) > <i>x,  g</i>(<i>f</i>(<i>x</i>)) > <i>x</i>?

  б)  <i>f</i>(<i>f</i>(<i>x</i>)) < <i>x, g</i>(<i>g</i>(<i>x</i>)) < <i>x</i>,   <i>f</i>(<i>g</i>(<i>x</i>)) > <i>x,  g</i>(<i>f</i>(<i>x&...

Пусть <i>ABC</i> – остроугольный треугольник, <i>C'</i> и <i>A'</i> – произвольные точки на сторонах <i>AB</i> и <i>BC</i> соответственно, <i>B'</i> – середина стороны <i>AC</i>.

  а) Докажите, что площадь треугольника <i>A'B'C'</i> не больше половины площади треугольника <i>ABC</i>.

  б) Докажите, что площадь треугольника <i>A'B'C'</i> равна четверти площади треугольника <i>ABC</i> тогда и только тогда, когда хотя бы одна из точек <i>A', C'</i> совпадает с серединой соответствующей стороны.

В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.

Найдите последнее число.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка