Олимпиадные задачи по теме «Геометрия» для 8-11 класса - сложность 3-4 с решениями

В треугольнике <i>ABC</i> угол <i>B</i> равен 60°. Точка <i>D</i> внутри треугольника такова, что  ∠<i>ADB</i> = ∠<i>ADC</i> = ∠<i>BDC</i>.

Найдите наименьшее значение площади треугольника <i>ABC</i>, если  <i>BD = a</i>.

В треугольнике <i>АВС</i> проведена биссектриса <i>АА</i><sub>1</sub>. Докажите, что серединный перпендикуляр к <i>АА</i><sub>1</sub>, перпендикуляр к <i>ВС</i>, проходящий через точку <i>А</i><sub>1</sub>, и прямая <i>АО</i> (<i>О</i> – центр описанной окружности) пересекаются в одной точке.

Три попарно непересекающиеся окружности ω<sub><i>x</i></sub>, ω<sub><i>y</i></sub>, ω<sub><i>z</i></sub> радиусов <i>r<sub>x</sub>, r<sub>y</sub>, r<sub>z</sub></i> лежат по одну сторону от прямой <i>t</i> и касаются её в точках <i>X, Y, Z</i> соответственно. Известно, что <i>Y</i> – середина отрезка <i>XZ</i>,  <i>r<sub>x</sub> = r<sub>z</sub> = r</i>,  а  <i>r<sub>y</sub> > r</i>.  Пусть <i>p</i> – одна из общих внутренних касательных к окружностям ω<sub><i>x</i></sub> и ω<sub><i>y</i></sub>, а <i&g...

В окружность Ω вписан остроугольный треугольник <i>ABC</i>, в котором  <i>AB > BC</i>.  Пусть <i>P</i> и <i>Q</i> – середины меньшей и большей дуг <i>AC</i> окружности Ω, соответственно, а <i>M</i> – основание перпендикуляра, опущенного из точки <i>Q</i> на отрезок <i>AB</i>. Докажите, что описанная окружность треугольника <i>BMC</i> делит пополам отрезок <i>BP</i>.

На окружности длины 2013 отмечены 2013 точек, делящих её на равные дуги. В каждой отмеченной точке стоит фишка. Назовём <i> расстоянием</i> между двумя точками длину меньшей дуги между ними. При каком наибольшем <i>n</i> можно переставить фишки так, чтобы снова в каждой отмеченной точке было по фишке, а расстояние между любыми двумя фишками, изначально удалёнными не более чем на <i>n</i>, увеличилось?

К двум непересекающимся окружностям ω<sub>1</sub> и ω<sub>2</sub> проведены три общие касательные – две внешние, <i>a</i> и <i>b</i>, и одна внутренняя, <i>c</i>. Прямые <i>a, b</i> и <i>c</i> касаются окружности ω<sub>1</sub> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> соответственно, а окружности ω<sub>2</sub> – в точках <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub> и <i>C</i><sub>2</sub> соответственно. Докажите, что отношение площадей треугольников <i>A</i><sub>1</sub><i>B</i&gt...

Даны три квадратных трёхчлена <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>) и <i>R</i>(<i>x</i>) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена <i>R</i>(<i>x</i>) в многочлен  <i>P</i>(<i>x</i>) + <i>Q</i>(<i>x</i>)  получаются равные значения. Аналогично при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в многочлен  <i>Q</i>(<i>x</i>) + <i>R</i>(<i>x</i>)  получаются равные значения, а также при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в многочлен  <i>P</i>(<i&g...

Серединный перпендикуляр к стороне <i>AC</i> неравнобедренного остроугольного треугольника <i>ABC</i> пересекает прямые <i>AB</i> и <i>BC</i> в точках <i>B</i><sub>1</sub> и <i>B</i><sub>2</sub> соответственно, а серединный перпендикуляр к стороне <i>AB</i> пересекает прямые <i>AC</i> и <i>BC</i> в точках <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub> соответственно. Описанные окружности треугольников <i>BB</i><sub>1</sub><i>B</i><sub>2</sub> и <i>CC</i><sub>1</sub><i>C</i><sub>2</sub> пересекаются в точках <i>P&lt...

На стороне <i>BC</i> квадрата <i>ABCD</i> выбрали точку <i>M</i>. Пусть <i>X, Y, Z</i> – центры окружностей, вписанных в треугольники <i>ABM, CMD, AMD</i> соответственно; <i>H<sub>x</sub>, H<sub>y</sub>, H<sub>z</sub></i> – ортоцентры треугольников <i>AXB, CYD, AZD</i> соответственно. Докажите, что точки <i>H<sub>x</sub>, H<sub>y</sub>, H<sub>z</sub></i> лежат на одной прямой.

Дан треугольник <i>ABC</i>. Касательная в точке <i>C</i> к его описанной окружности пересекает прямую <i>AB</i> в точке <i>D</i>. Касательные к описанной окружности треугольника <i>ACD</i> в точках <i>A</i> и <i>C</i> пересекаются в точке <i>K</i>. Докажите, что прямая <i>DK</i> делит отрезок <i>BC</i> пополам.

Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.

Пусть <i>M</i> и <i>I</i> – точки пересечения медиан и биссектрис неравнобедренного треугольника <i>ABC</i>, а <i>r</i> – радиус вписанной в него окружности.

Докажите, что  <i>MI</i> = <sup><i>r</i></sup>/<sub>3</sub>  тогда и только тогда, когда прямая <i>MI</i> перпендикулярна одной из сторон треугольника.

Точку внутри треугольника назовём <i>хорошей</i>, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.

Пусть <i>AH</i> – высота остроугольного треугольника <i>ABC</i>, а точки <i>K</i> и <i>L</i> – проекции <i>H</i> на стороны <i>AB</i> и <i>AC</i>. Описанная окружность Ω треугольника <i>ABC</i> пересекает прямую <i>KL</i> в точках <i>P</i> и <i>Q</i>, а прямую <i>AH</i> – в точках <i>A</i> и <i>T</i>. Докажите, что точка <i>H</i> является центром вписанной окружности треугольника <i>PQT</i>.

В выпуклом пятиугольнике <i>P</i> провели все диагонали, в результате чего он оказался разбитым на десять треугольников и один пятиугольник <i>P'</i>. Из суммы площадей треугольников, прилегающих к сторонам <i>P</i>, вычли площадь <i>P'</i>; получилось число <i>N</i>. Совершив те же операции с пятиугольником <i>P'</i>, получили число <i>N'</i>. Докажите, что  <i>N > N'</i>.

При каких  <i>n</i> > 3  правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?

В треугольнике <i>ABC</i> провели биссектрису <i>CL</i>. В треугольники <i>CAL</i> и <i>CBL</i> вписали окружности, которые касаются прямой <i>AB</i> в точках <i>M</i> и <i>N</i> соответственно. Затем все, кроме точек <i>A, L, M</i> и <i>N</i>, стерли. С помощью циркуля и линейки восстановите треугольник.

Через вершины <i>A, B, C</i> треугольника <i>ABC</i> проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Точки <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub>, <i>C</i><sub>2</sub> симметричны точкам <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> относительно сторон <i>BC, CA, AB</i> соответственно. Докажите, что прямые <i>AA</i><sub>2</sub>, <i>BB</i><sub>2</sub>,...

Квадрат разрезан на несколько (больше одного) выпуклых многоугольников с попарно различным числом сторон.

Докажите, что среди них есть треугольник.

Высоты <i>AA</i><sub>1</sub>, <i>CC</i><sub>1</sub> остроугольного треугольника <i>ABC</i> пересекаются в точке <i>H</i>. Точка <i>Q</i> симметрична середине стороны <i>AC</i> относительно <i>AA</i><sub>1</sub>. Точка <i>P</i> – середина отрезка <i>A</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что  ∠<i>QPH</i> = 90°.

Окружность Ω описана около треугольника <i>ABC</i>. На продолжении стороны <i>AB</i> за точку <i>B</i> взяли такую точку <i>B</i><sub>1</sub>, что  <i>AB</i><sub>1</sub> = <i>AC</i>.  Биссектриса угла <i>A</i> пересекает Ω вторично в точке <i>W</i>. Докажите, что ортоцентр треугольника <i>AWB</i><sub>1</sub> лежит на Ω.

Дан равнобедренный треугольник <i>ABC</i>, в котором  ∠<i>B</i> = 120°.  На продолжениях сторон <i>AB</i> и <i>CB</i> за точку <i>B</i> взяли точки <i>P</i> и <i>Q</i> соответственно так, что лучи <i>AQ</i> и <i>CP</i> пересекаются под прямым углом. Докажите, что  ∠<i>PQB</i> = 2∠<i>PCQ</i>.

Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других. <div align="center"><img src="/storage/problem-media/116897/problem_116897_img_2.gif"></div>

В треугольнике <i>ABC</i>:  ∠<i>B</i> = 22,5°,  ∠<i>C</i> = 45°.  Докажите, что высота <i>АН</i>, медиана <i>BM</i> и биссектриса <i>CL</i> пересекаются в одной точке.

В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников. Найдите длину отрезка, по которому эти сечения пересекаются.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка