Олимпиадные задачи по теме «Алгебраические уравнения и системы уравнений» для 11 класса
Алгебраические уравнения и системы уравнений
НазадНайдите все неотрицательные решения системы уравнений:
<i>x</i>³ = 2<i>y</i>² – <i>z</i>,
<i>y</i>³ = 2<i>z</i>² – <i>x</i>,
<i>z</i>³ = 2<i>x</i>² – <i>y</i>.
Набор чисел<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>, ...,<i>a<sub>n</sub></i>удовлетворяет условиям: <i>a</i><sub>0</sub>= 0, 0 ≤<i>a</i><sub><i>k</i>+1</sub>–<i>a<sub>k</sub></i>≤ 1 при <i>k</i>= 0, 1, ...,<i>n</i>– 1. Докажите неравенство <img align="absmiddle" src="/storage/problem-media/110096/problem_110096_img_2.gif">
Набор чисел <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> удовлетворяет условиям: <i>a</i><sub>0</sub> = 0, <i>a</i><sub><i>k</i>+1</sub> ≥ <i>a</i><sub><i>k</i></sub> + 1 при <i>k</i> = 0, 1, ..., <i>n</i> – 1. Докажите неравенство <img align="absmiddle" src="/storage/problem-media/110087/problem_110087_img_2.gif">
Участникам тестовой олимпиады было предложено <i>n</i> вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?
Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?
Значение <i>a</i> подобрано так, что число корней первого из уравнений 4<sup><i>x</i></sup> – 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i>, 4<sup><i>x</i></sup> + 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i> + 4 равно 2007.
Сколько корней при том же <i>a</i> имеет второе уравнение?
Решите уравнение: (<i>x</i>³ – 2)(2<sup>sin <i>x</i></sup> – 1) + (2<sup><i>x</i>³</sup> – 4) sin <i>x</i> = 0.
Решить уравнение (<i>x</i>² – <i>x</i> + 1)<sup>4</sup> – 10<i>x</i>²(<i>x</i>² – <i>x</i> + 1)² + 9<i>x</i><sup>4</sup> = 0.
Решить систему уравнений <img align="middle" src="/storage/problem-media/108989/problem_108989_img_2.gif">
На отрезке [0, 1] отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.
Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...
Пусть <i>f</i>(<i>x</i>) = <i>x</i>² + 12<i>x</i> + 30. Решите уравнение <i>f</i>(<i>f</i>(<i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))))) = 0.
Положительные числа <i>A, B, C</i> и <i>D</i> таковы, что система уравнений
<i>x</i>² + <i>y</i>² = <i>A</i>,
|<i>x| + |y| = B</i>
имеет <i>m</i> решений, а система уравнений
<i>x</i>² + <i>y</i>² + <i>z</i>² = <i>C</i>,
|<i>x| + |y| + |z| = D</i>
имеет <i>n</i> решений. Известно, что <i>m > n</i> > 1. Найдите <i>m</i> и <i>n</i>.
Функция<i>f</i>(<i>x</i>) при каждом значении <i>x</i>∈ (− ∞, + ∞) удовлетворяет равенству <i>f</i>(<i>x</i>) + (<i>x</i>+ ½)<i>f</i>(1 −<i>x</i>) = 1. а) Найдите<i>f</i>(0) и<i>f</i>(1). б) Найдите все такие функции<i>f</i>(<i>x</i>).
Найдите все положительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub>10</sub>, удовлетворяющие при всех <i>k</i> = 1, 2,..., 10 условию (<i>x</i><sub>1</sub> + ... + <i>x<sub>k</sub></i>)(<i>x<sub>k</sub> + ... + x</i><sub>10</sub>) = 1.
Решить уравнение <img align="middle" src="/storage/problem-media/79481/problem_79481_img_2.gif">
Рассматривается система уравнений:
<img align="absmiddle" src="/storage/problem-media/78686/problem_78686_img_2.gif">
Докажите, что при некоторых <i>k</i> такая система имеет решение.
Дана система уравнений:
<img width="20" height="111" align="MIDDLE" border="0" src="/storage/problem-media/78282/problem_78282_img_2.gif"><img width="247" height="111" align="MIDDLE" border="0" src="/storage/problem-media/78282/problem_78282_img_3.gif">
Какие значения может принимать <i>x</i><sub>25</sub>?
Решить уравнение <i>x</i>³ – [<i>x</i>] = 3.
Докажите, что система уравнений <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub> = <i>a</i>, <i>x</i><sub>3</sub> – <i>x</i><sub>4</sub> = <i>b</i>, <i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + <i>x</i><sub>3</sub> + <i>x</i><sub>4</sub> = 1 имеет хотя бы одно положительное решение тогда и только тогда, когда |<i>a</i>| + |<i>b</i>| < 1.
Дано уравнение <i>x<sup>n</sup> – a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> – <i>a</i><sub>2</sub><i>x</i><sup><i>n</i>–2</sup> – ... – <i>a</i><sub><i>n</i>–1</sub><i>x – a<sub>n</sub></i> = 0, где <i>a</i><sub>1</sub> ≥ 0, <i>a</i><sub>2</sub> ≥ 0, <i>a<sub>n</sub></i> ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.
Найти все действительные решения системы
<i>x</i>³ + <i>y</i>³ = 1,
<i>x</i><sup>4</sup> + <i>y</i><sup>4</sup> = 1.
Дано 100 чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a</i><sub>100</sub>, удовлетворяющих условиям:
<i>a</i><sub>1</sub> – 4<i>a</i><sub>2</sub> + 3<i>a</i><sub>3</sub> ≥ 0,
<i>a</i><sub>2</sub> – 4<i>a</i><sub>3</sub> + 3<i>a</i><sub>4</sub> ≥ 0,
<i>a</i><sub>3</sub> – 4<i>a</i><sub>4</sub> + 3<i>a</i><sub>5</sub> ≥ 0,
...,
<i>a</i><sub>99</sub> – 4<i>a</i><sub>100</sub> +...
Дано 100 чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a</i><sub>100</sub>, удовлетворяющих условиям:
<i>a</i><sub>1</sub> – 3<i>a</i><sub>2</sub> + 2<i>a</i><sub>3</sub> ≥ 0,
<i>a</i><sub>2</sub> – 3<i>a</i><sub>3</sub> + 2<i>a</i><sub>4</sub> ≥ 0,
<i>a</i><sub>3</sub> – 3<i>a</i><sub>4</sub> + 2<i>a</i><sub>5</sub> ≥ 0,
...,
<i>a</i><sub>99</sub> – 3<i>a</i><sub>100</sub> +...
Найти корни уравнения <img align="absmiddle" src="/storage/problem-media/77992/problem_77992_img_2.gif">