Олимпиадные задачи по математике для 2-11 класса - сложность 3 с решениями

В классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.

Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.

Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?

В треугольнике <i>ABC</i> угол <i>B</i> равен 60°. Точка <i>D</i> внутри треугольника такова, что  ∠<i>ADB</i> = ∠<i>ADC</i> = ∠<i>BDC</i>.

Найдите наименьшее значение площади треугольника <i>ABC</i>, если  <i>BD = a</i>.

В треугольнике <i>АВС</i> проведена биссектриса <i>АА</i><sub>1</sub>. Докажите, что серединный перпендикуляр к <i>АА</i><sub>1</sub>, перпендикуляр к <i>ВС</i>, проходящий через точку <i>А</i><sub>1</sub>, и прямая <i>АО</i> (<i>О</i> – центр описанной окружности) пересекаются в одной точке.

Последовательные натуральные числа 2 и 3 делятся на последовательные нечётные числа 1 и 3 соответственно; числа 8, 9 и 10 – делятся на 1, 3 и 5 соответственно. Найдутся ли 11 последовательных натуральных чисел, которые делятся на 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 соответственно?

В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?

В треугольнике <i>ABC</i>:  ∠<i>B</i> = 22,5°,  ∠<i>C</i> = 45°.  Докажите, что высота <i>АН</i>, медиана <i>BM</i> и биссектриса <i>CL</i> пересекаются в одной точке.

В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников. Найдите длину отрезка, по которому эти сечения пересекаются.

В каждой клетке таблицы 10×10 записано число. В каждой строке подчеркнули наибольшее число (или одно из наибольших, если их несколько), а в каждом столбце – наименьшее (или одно из наименьших). Оказалось, что все подчёркнутые числа подчёркнуты ровно два раза. Докажите, что все числа, записанные в таблице, между собой равны.

Каждый узел бесконечной сетки покрашен в один из четырёх цветов так, что вершины каждого квадрата со стороной 1 окрашены в разные цвета. Верно ли, что узлы одной из прямых сетки окрашены только в два цвета? (Сетка образована горизонтальными и вертикальными прямыми. Расстояние между соседними параллельными прямыми равно 1.)

Длина каждой из сторон выпуклого шестиугольника <i>ABCDEF</i> меньше 1. Может ли длина каждой из диагоналей <i>АD, ВЕ</i> и <i>CF</i> быть не меньше 2?

Существуют ли такие значения <i>a</i> и <i>b</i>, при которых уравнение   <i>х</i><sup>4</sup> – 4<i>х</i><sup>3</sup> + 6<i>х</i>² + <i>aх + b</i> = 0  имеет четыре различных действительных корня?

На сторонах <i>АС</i> и <i>ВС</i> равностороннего треугольника <i>АВС</i> отмечены точки <i>D</i> и <i>Е</i> соответственно так, что  <i>AD</i> = &frac13; <i>AC,  CE</i> = &frac13; <i>CE</i>.  Отрезки <i>АЕ</i> и <i>BD</i> пересекаются в точке <i>F</i>. Найдите угол <i>BFC</i>.

Вписанная окружность треугольника <i>ABC</i> касается его сторон <i>ВС</i>, <i>АС</i> и <i>АВ</i> в точках <i>A', B'</i> и <i>C'</i> соответственно. Точка <i>K</i> – проекция точки <i>C'</i> на прямую <i>A'B'</i>. Докажите, что <i>KC'</i> – биссектриса угла <i>AKB</i>.

Четыре перпендикуляра, опущенные из вершин выпуклого пятиугольника на противоположные стороны, пересекаются в одной точке.

Докажите, что пятый такой перпендикуляр тоже проходит через эту точку.

B выпуклом четырёхугольнике <i>ABCD</i>:  <i>AC</i> ⊥ <i>BD</i>,  ∠<i>BCA</i> = 10°,  ∠<i>BDA</i> = 20°,  ∠<i>BAC</i> = 40°.  Найдите ∠<i>BDC</i>.

Найдите все простые числа <i>p, q</i> и <i>r</i>, для которых выполняется равенство:  <i>p + q</i> = (<i>p – q</i>)<sup><i>r</i></sup>.

В выпуклом четырёхугольнике <i>ABCD</i>:  ∠<i>ВАС</i> = 20°,  ∠<i>ВСА</i> = 35°,  ∠<i>ВDС</i> = 40°,  ∠<i>ВDА</i> = 70°.

Найдите угол между диагоналями четырёхугольника.

Для различных положительных чисел <i>а</i> и <i>b</i> выполняется равенство  <img align="absmiddle" src="/storage/problem-media/116018/problem_116018_img_2.png">.  Докажите, что <i>а</i> и <i>b</i> – взаимно обратные числа.

Четырёхугольник <i>ABCD</i> вписан в окружность. Биссектрисы углов <i>В</i> и <i>С</i> пересекаются в точке, лежащей на отрезке <i>AD</i>.

Найдите <i>AD</i>, если  <i>АВ</i> = 5,  <i>СD</i> = 3.

Докажите, что если  <i>x</i> > 0,  <i>y</i> > 0,  <i>z</i> > 0 и  <i>x</i>² + <i>y</i>² + <i>z</i>² = 1,  то  <img align="absmiddle" src="/storage/problem-media/115995/problem_115995_img_2.gif">,  и укажите, в каком случае достигается равенство.

Найдите наименьшее значение  <i>x</i>² + <i>y</i>²,  если  <i>x</i><sup>2</sup> – <i>y</i>² + 6<i>x</i> + 4<i>y</i> + 5 = 0.

Докажите, что при любых натуральных  0 <<i>k</i><<i>m < n</i>  числа  <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_2.gif">  и  <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_3.gif">  не взаимно просты.

Докажите, что если у тетраэдра два отрезка, идущие из концов некоторого ребра в центры вписанных окружностей противолежащих граней, пересекаются, то отрезки, выпущенные из концов скрещивающегося с ним ребра в центры вписанных окружностей двух других граней, также пересекаются.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка