Олимпиадные задачи по математике для 10 класса - сложность 1-4 с решениями

Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?

Числа <i>a, b</i> и <i>c</i> таковы, что  (<i>a + b</i>)(<i>b + c</i>)(<i>c + a</i>) = <i>abc</i>,  (<i>a</i>³ + <i>b</i>³)(<i>b</i>³ + <i>c</i>³)(<i>c</i>³ + <i>a</i><sup>3</sup>) = <i>a</i>³<i>b</i>³<i>c</i>³.  Докажите, что  <i>abc</i> = 0.

Мишень "бегущий кабан" находится в одном из<i> n </i>окошек, расположенных в ряд. Окошки закрыты занавесками так, что для стрелка мишень все время остается невидимой. Чтобы поразить мишень, достаточно выстрелить в окошко, в котором она в момент выстрела находится. Если мишень находится не в самом правом окошке, то сразу после выстрела она перемещается на одно окошко вправо; из самого правого окошка мишень никуда не перемещается. Какое наименьшее число выстрелов нужно сделать, чтобы наверняка поразить мишень?

Набор пятизначных чисел<i> {N<sub>1</sub> </i>,<i> N<sub>k</sub>} </i>таков, что любое пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в одном разряде хотя бы с одним их чисел<i> N<sub>1</sub> </i>,<i> N<sub>k</sub> </i>. Найдите наименьшее возможное значение<i> k </i>.

По шоссе мимо наблюдателя проехали "Москвич", "Запорожец" и двигавшаяся им навстречу "Нива". Известно, что когда с наблюдателем поравнялся "Москвич", то он был равноудалён от "Запорожца" и "Нивы", а когда с наблюдателем поравнялась "Нива", то она была равноудалена от "Москвича" и "Запорожца". Докажите, что "Запорожец" в момент проезда мимо наблюдателя был равноудалён от "Нивы" и "Москвича". (Скорости автомашин считаем постоянными. В рассматриваемые моменты равноудалённые машины находились по разные стороны от наблюдателя.)

Путь от платформы <i>A</i> до платформы <i>B</i> электропоезд прошел за <i>X</i> минут  (0 < <i>X</i> < 60).  Найдите <i>X</i>, если известно, что как в момент отправления от <i>A</i>, так и в момент прибытия в <i>B</i> угол между часовой и минутной стрелками равнялся <i>X</i> градусам.

Докажите, что если1<i><a<b<c </i>, то <center><i>

log <sub>a</sub></i>(<i>log <sub>a</sub> b</i>)<i>+log <sub>b</sub> </i>(<i>log <sub>b</sub> c</i>)<i>+log <sub>c</sub></i>(<i>log <sub>c</sub>a</i>)<i>></i>0<i>. </i></center>

Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за четыре взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?

Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).

Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?

Натуральные числа <i>m</i> и <i>n</i> таковы, что  НОК(<i>m, n</i>) + НОД(<i>m, n</i>) = <i>m + n</i>.  Докажите, что одно из чисел <i>m</i> или <i>n</i> делится на другое.

Найдите наименьшее натуральное число, представимое в виде суммы 2002 натуральных слагаемых с одинаковой суммой цифр и в виде суммы 2003 натуральных слагаемых с одинаковой суммой цифр.

Участникам тестовой олимпиады было предложено <i>n</i> вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?

Найдите все такие тройки натуральных чисел <i>m, n</i> и <i>l</i>, что  <i>m + n</i> = (НОД(<i>m, n</i>))²,  <i>m + l</i> = (НОД(<i>m, l</i>))²,  <i>n + l</i> = (НОД(<i>n, l</i>))².

В строку в неизвестном порядке записаны все целые числа от 1 до 100. За один вопрос про любые 50 чисел можно узнать, в каком порядке относительно друг друга записаны эти 50 чисел. За какое наименьшее число вопросов наверняка можно узнать, в каком порядке записаны все 100 чисел?

Можно ли в клетки таблицы 9×9 записать натуральные числа от 1 до 81 так, чтобы сумма чисел в каждом квадрате 3&times3 была одна и та же?

Известно, что  <i>f</i>(<i>x</i>), <i>g</i>(<i>x</i>) и <i>h</i>(<i>x</i>) – квадратные трёхчлены. Может ли уравнение  <i>f</i>(<i>g</i>(<i>h</i>(<i>x</i>)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

В классе 30 учеников, и у каждого из них одинаковое число друзей среди одноклассников. Каково наибольшее возможное число учеников, которые учатся лучше большинства своих друзей? (Про любых двух учеников в классе можно сказать, кто из них учится лучше; если <i>A</i> учится лучше <i>B</i>, а тот – лучше <i>C</i>, то <i>A</i> учится лучше <i>C</i>.)

Дан правильный 2<i>n</i>-угольник.

Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

В турнире по теннису <i>n</i> участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких <i>n</i> возможен такой турнир?

Найдите все функции<i> f</i>(<i>x</i>), определенные при всех положительных<i> x </i>, принимающие положительные значения и удовлетворяющие при любых положительных<i> x </i>и<i> y </i>равенству<i> f</i>(<i>x<sup>y</sup></i>)<i>=f</i>(<i>x</i>)<i><sup>f</sup></i>(<i>y</i>).

В круговом шахматном турнире каждый участник сыграл с каждым из остальных один раз. Назовём партию <i>неправильной</i>, если выигравший её шахматист в итоге набрал очков меньше чем проигравший. (Победа даёт 1 очко, ничья – ½, поражение – 0.) Могут ли неправильные партии составлять

  а) более 75% от общего количества партий в турнире;

  б) более 70%?

В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции?

Найдите максимальное число <i>N</i>, для которого существуют такие <i>N</i> последовательных натуральных чисел, что сумма цифр первого числа делится на 1, сумма цифр второго числа – на 2, сумма цифр третьего числа – на 3, ..., сумма цифр <i>N</i>-го числа – на <i>N</i>.

В однокруговом шахматном турнире назовём партию <i>неправильной</i>, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший.

Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.

Карточка матлото представляет собой таблицу 10×10 клеточек. Играющий отмечает 10 клеточек и отправляет карточку в конверте. После этого в газете публикуется десятка проигрышных клеточек. Докажите, что

  а) можно заполнить 13 карточек так, чтобы среди них обязательно нашлась "выигрышная" карточка – такая, в которой не отмечена ни одна проигрышная клеточка;

  б) двенадцати карточек для этого недостаточно.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка