Олимпиадные задачи по математике для 8 класса - сложность 1-3 с решениями
<i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в трёхчлен <i>Q</i>(<i>x</i>), равна сумме двух чисел, получаемых при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в трёхчлен <i>P</i>(<i>x</i>). Докажите, что дискриминанты трёхчленов <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) равны.
Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?
Даны три квадратных трёхчлена <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>) и <i>R</i>(<i>x</i>) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена <i>R</i>(<i>x</i>) в многочлен <i>P</i>(<i>x</i>) + <i>Q</i>(<i>x</i>) получаются равные значения. Аналогично при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в многочлен <i>Q</i>(<i>x</i>) + <i>R</i>(<i>x</i>) получаются равные значения, а также при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в многочлен <i>P</i>(<i&g...
Ненулевые числа <i>a</i> и <i>b</i> таковы, что уравнение <i>a</i>(<i>x – a</i>)² + <i>b</i>(<i>x – b</i>)² = 0 имеет единственное решение. Докажите, что |<i>a| = |b</i>|.
Окружность, вписанная в прямоугольный треугольник <i>ABC</i> с гипотенузой <i>AB</i>, касается его сторон <i>BC, CA, AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Пусть <i>B</i><sub>1</sub><i>H</i> – высота треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что точка <i>H</i> лежит на биссектрисе угла <i>CAB</i>.
Даны натуральные числа <i>M</i> и <i>N</i>, большие десяти, состоящие из одинакового количества цифр и такие, что <i>M</i> = 3<i>N</i>. Чтобы получить число <i>M</i>, надо в числе <i>N</i> к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число <i>N</i>?
В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так, что каждая команда первой группы одержала ровно <i>n</i> побед, а каждая команда второй группы – ровно <i>m</i> побед. Могло ли оказаться, что <i>m</i> ≠ <i>n</i>?
Через вершины основания четырёхугольной пирамиды <i>SABCD</i> проведены прямые, параллельные противоположным боковым рёбрам (через вершину <i>A</i> – параллельно <i>SC</i>, и так далее). Эти четыре прямые пересеклись в одной точке. Докажите, что четырёхугольник <i>ABCD</i> – параллелограмм.
Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.
Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?
За круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"?
Можно ли раскрасить натуральные числа в 2009 цветов так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в три различных цвета, таких, что произведение двух из них равно третьему?
Можно ли при каком-то натуральном<i> k </i>разбить все натуральные числа от 1 до<i> k </i>на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?
Даны квадратные трёхчлены <i>x</i>² + 2<i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>, <i>x</i>² + 2<i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>, <i>x</i>² + 2<i>a</i><sub>3</sub><i>x + b</i><sub>3</sub>. Известно, что <i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub> = <i>b</i><sub>1</sub><i>b</i><sub>2</sub><i>b</i><sub>3</sub> > 1.
Докажите, что хотя бы один из этих трёхчленов имеет два корня.
Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз?
Найдите все такие тройки действительных чисел <i>x, y, z</i>, что 1 + <i>x</i><sup>4</sup> ≤ 2(<i>y – z</i>)² 1 + <i>y</i><sup>4</sup> ≤ 2(<i>z – x</i>)², 1 + <i>z</i><sup>4</sup> ≤ 2(<i>x – y</i>)².
В клетках таблицы 10×10 произвольно расставлены натуральные числа от 1 до 100, каждое по одному разу. За один ход разрешается поменять местами любые два числа. Докажите, что за 35 ходов можно добиться того, чтобы сумма каждых двух чисел, стоящих в клетках с общей стороной, была составной.
На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.
По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.
В натуральном числе <i>A</i> переставили цифры, получив число <i>B</i>. Известно, что <img align="top" src="/storage/problem-media/111791/problem_111791_img_2.gif"> Найдите наименьшее возможное значение <i>n</i>.
В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.
У двух треугольников равны наибольшие стороны и равны наименьшие углы. Строится новый треугольник со сторонами, равными суммам соответствующих сторон данных треугольников (складываются наибольшие стороны двух треугольников, средние по длине стороны и наименьшие стороны). Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.
В клетчатом квадрате 101×101 каждая клетка внутреннего квадрата 99×99 покрашена в один из десяти цветов (клетки, примыкающие к границе квадрата, не покрашены). Может ли оказаться, что в каждом квадрате 3×3 в цвет центральной клетки покрашена еще ровно одна клетка?
В каждую клетку бесконечной клетчатой плоскости записано одно из чисел 1, 2, 3, 4 так, что каждое число встречается хотя бы один раз. Назовём клетку <i>правильной</i>, если количество различных чисел, записанных в четыре соседние (по стороне) с ней клетки, равно числу, записанному в эту клетку. Могут ли все клетки плоскости оказаться правильными?
В остроугольном треугольнике расстояние от середины каждой стороны до противоположной вершины равно сумме расстояний от неё до сторон треугольника. Докажите, что этот треугольник – равносторонний.