Олимпиадные задачи из источника «23 турнир (2001/2002 год)» - сложность 3 с решениями
23 турнир (2001/2002 год)
НазадПусть <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub>, <i>CC</i><sub>1</sub> – высоты остроугольного треугольника <i>ABC, O<sub>A</sub>, O<sub>B</sub>, O<sub>C</sub></i> – центры вписанных окружностей треугольников <i>AB</i><sub>1</sub><i>C</i><sub>1</sub>, <i>BC</i><sub>1</sub><i>A</i><sub>1</sub>, <i>CA</i><sub>1</sub><i>B</i><sub>1</sub> соответственно; <i>T<sub>A</sub>, T<sub>B</sub>, T<sub>C</sub></i> – точки касания вписанной окружности треугольника <i>ABC</i> со сторо...
В выпуклом четырёхугольнике <i>ABCD</i> точки <i>E</i> и <i>F</i> являются серединами сторон <i>BC</i> и <i>CD</i> соответственно. Отрезки <i>AE, AF</i> и <i>EF</i> делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника <i>ABD</i>?
В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих.
Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?
Остроугольный треугольник разрезали прямолинейным разрезом на две (не обязательно треугольные) части, затем одну из этих частей – опять на две части, и так далее: на каждом шаге выбирали любую из уже имеющихся частей и разрезали её (по прямой) на две. Через несколько шагов оказалось, что исходный треугольник распался на несколько треугольников. Могут ли все они быть тупоугольными?
В ряд расположили <i>n</i> лампочек и зажгли некоторые из них. Каждую минуту после этого все лампочки, горевшие на прошлой минуте, гаснут, а те негоревшие лампочки, которые на прошлой минуте соседствовали ровно с одной горящей лампочкой, загораются. При каких <i>n</i> можно так зажечь некоторые лампочки в начале, чтобы потом в любой момент нашлась хотя бы одна горящая лампочка?
Существуют ли такие иррациональные числа <i>a</i> и <i>b</i>, что <i>a </i> > 1, <i>b</i> > 1, и [<i>a<sup>m</sup></i>] отлично от [<i>b<sup>n</sup></i>] при любых натуральных числах <i>m</i> и <i>n</i>?
Колоду из 52 карт разложили в виде прямоугольника 13×4. Известно, что если две карты лежат рядом по вертикали или горизонтали, то они одной масти либо одного достоинства. Докажите, что в каждом горизонтальном ряду (из 13 карт) все карты одной масти.
Верно ли, что на графике функции <i>y = x</i>³ можно отметить такую точку <i>A</i>, а на графике функции <i>y = x</i>³ + |<i>x</i>| + 1 – такую точку <i>B</i>, что расстояние <i>AB</i> не превысит <sup>1</sup>/<sub>100</sub>?
С цепочкой камней домино, сложенной по обычным правилам, разрешается проделывать такую операцию: выбирается кусок из нескольких подряд доминошек с одинаковыми очками на концах куска, переворачивается целиком и вставляется на то же место. Докажите, что если у двух цепочек, сложенных из двух одинаковых комплектов домино, значения очков на концах совпадают, то разрешёнными операциями можно сделать порядок следования доминошек во второй цепочке таким же, как в первой.
Существует ли правильная треугольная призма, которую можно оклеить (без наложений) различными равносторонними треугольниками? (Разрешается перегибать треугольники через рёбра призмы.)
Сколькими способами можно расставить числа от 1 до 100 в прямоугольнике 2×50 так, чтобы каждые два числа, различающиеся на 1, всегда попадали бы в клетки с общей стороной?
Есть шесть кусков сыра разного веса. Известно, что можно разложить сыр на две кучки по три куска так, чтобы кучки весили поровну.
Как можно сделать это за два взвешивания на чашечных весах без гирь, если про любые два куска на глаз видно, какой весит больше?
а) Есть 128 монет двух различных весов, монет каждого веса поровну. Как на чашечных весах без гирь гарантированно найти две монеты разного веса не более чем за семь взвешиваний?
б) Есть восемь монет двух различных весов, монет каждого веса поровну. Как на чашечных весах без гирь гарантированно найти две монеты разного веса за два взвешивания?
В ряд стоят 23 коробочки с шариками, причём для каждого числа <i>n</i> от 1 до 23 есть коробочка, в которой ровно <i>n</i> шариков. За одну операцию можно переложить в любую коробочку еще столько же шариков, сколько в ней уже есть, из какой-нибудь другой коробочки, в которой шариков больше. Всегда ли можно такими операциями добиться, чтобы в первой коробочке оказался 1 шарик, во второй – 2 шарика, ..., в 23-й – 23 шарика?
Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального <i>n</i> в <i>n</i>-м члене подчёркнутые цифры образовали число <i>n</i>). Докажите, что разность прогрессии – степень числа 10.
Пусть <i>F</i><sub>1</sub>, <i>F</i><sub>2</sub>, <i>F</i><sub>3</sub>, ... – последовательность выпуклых четырёхугольников, где <i>F</i><sub><i>k</i>+1</sub> (при <i>k</i> = 1, 2, 3, ...) получается так: <i>F<sub>k</sub></i> разрезают по диагонали, одну из частей переворачивают и склеивают по линии разреза с другой частью. Какое наибольшее количество различных четырёхугольников может содержать эта последовательность? (Различными считаются многоугольники, которые нельзя совместить движением.)
Клетки шахматной доски занумерованы числами от 1 до 64 так, что соседние номера стоят в соседних (по стороне) клетках.
Какова наименьшая возможная сумма номеров на диагонали?
Существуют ли такие натуральные числа <i>a</i><sub>1</sub> < <i>a</i><sub>2</sub> < <i>a</i><sub>3</sub> < ... < <i>a</i><sub>100</sub>, что НОК(<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>) > НОК(<i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>) > ... > НОК(<i>a</i><sub>99</sub>, <i>a</i><sub>100</sub>)?
Известно, что число 2<sup>333</sup> имеет 101 цифру и начинается с цифры 1. Сколько чисел в ряду 2, 4, 8, 16, ..., 2<sup>333</sup> начинается с цифры 4?
В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно.
Саша выставляет на пустую шахматную доску ладьи: первую – куда захочет, а каждую следующую ставит так, чтобы она побила нечётное число ранее выставленных ладей. Какое наибольшее число ладей он сможет так выставить?
Правильный (2<i>n</i>+1)-угольник разбили диагоналями на 2<i>n</i> – 1 треугольник. Докажите, что среди них по крайней мере три равнобедренных.
В каждой клетке таблицы (<i>n</i>–2)×<i>n</i> (<i>n</i> > 2) записано целое число от 1 до <i>n</i>, причём в каждой строке все числа различны и в каждом столбце все числа различны. Докажите, что эту таблицу можно дополнить до квадрата <i>n</i>×<i>n</i>, записав в каждую новую клетку какое-нибудь целое число от 1 до <i>n</i> так, чтобы по-прежнему в каждой строке и в каждом столбце числа были различны.
<i>n</i> красных и <i>n</i> синих точек, строго чередуясь, разделили окружность на 2<i>n</i> дуг так, что каждые две смежные из них имеют различную длину. При этом длины каждой из этих дуг равны одному из трёх чисел: <i>a, b</i> или <i>c</i>. Докажите, что <i>n</i>-угольник с красными вершинами и <i>n</i>-угольник с синими вершинами имеют равные периметры и равные площади.